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Preface

In this day and age, chemical engineers are faced with many research and design
problems which are so complicated that they cannot be solved with numerical
mathematics. In this context, one only has to think of processes involving fluids
with temperature-dependent physical properties or non-Newtonian flow behavior.
Fluid mechanics in heterogeneous material systems exhibiting coalescence pheno-
mena or foaming also demonstrates this problem. The scaling up of equipment nee-
ded for dealing with such material systems often presents serious hurdles which
can be frequently overcome only with the aid of partial similarity.

In general, the university graduate has not at all been adequately trained to deal
with such problems. On the one hand, treatises on dimensional analysis, the theory
of similarity and scale-up methods included in common, “run of the mill” textbooks
on chemical engineering are out of date. In addition, they are only seldomly written
in such a manner that would popularize these methods. On the other hand, there is
no motivation for this type of research at universities since, as a rule, they are not
confronted with scale-up tasks and are therefore not equipped with the necessary
apparatus on the bench-scale.

All of these points give the totally wrong impression that the methods referred to
are — at most — of only marginal importance in practical chemical engineering,
because otherwise they would have been dealt with in greater depth at the university
level!

The aim of this book is to remedy this deficiency. It presents dimensional analysis
— this being the only secure foundation of the scale-up — in such a way that it can be
immediately and easily understood, even without a mathematical background.

Due to the increasing importance of biotechnology, which employs non-Newto-
nian fluids by far more frequently than chemical industry does, variable physical
properties (e.g. temperature dependence, shear-dependence of viscosity) are treated
in detail. It must be kept in mind that in scaling up such processes, apart from the
geometrical and process-related similarity, the material similarity also has to be con-
sidered.

The theoretical foundations of dimensional analysis and of scale-up are presented
and discussed in the first half of this book. This theoretical framework is demon-
strated by twenty examples, all of which deal with interesting engineering problems
taken from current practice.
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Preface

The second half of this book deals with the integral dimensional-analytical treat-
ment of problems taken from the areas of mechanical, thermal and chemical pro-
cess engineering. In this respect, the term “integral” is used to indicate that, in the
treatment of each problem, dimensional analysis was applied from the very begin-
ning and that, as a consequence, the performance and evaluation of tests were
always in accordance with its predictions.

A thorough consideration of this approach not only provides the reader with a
practical guideline for their own use; it also shows the unexpectedly large advantage
offered by these methods.

The interested reader, intending to solve a concrete problem but is not familiar
with the dimensional-analytical methodology, does not need to read this book from
cover to cover in order to solve the respective task in this manner. It is sufficient to
read the first seven chapters (ca. 50 pages), these dealing with the dimensional anal-
ysis and the generation of dimensionless numbers. Subsequently, the reader can
scrutinize the examples given in the second part of this book and choose that one
example which helps find a solution to the problem under consideration. In doing
so, the task at hand can be solved in the dimensional-analytical way. Only the practi-
cal treatment of such problems facilitates understanding for the benefit and effici-
ency of these methods.

In the course of the past 35 years where I have been investigating dimensional-
analytical working methods from the practical point of view, my friend and collea-
gue, Dr. Juri Pawlowski, has been an invaluable teacher and adviser. I am indebted to
him for innumerable suggestions and tips as well as for his comments on this man-
uscript. I would like to express my gratitude to him at this point.

In closing, my sincere thanks also go to my former employer, the company
BAYER AG, Leverkusen/Germany. In the “Engineering Department Applied Phys-
ics” I could devote my whole professional life to process engineering research and
development. This company always permitted me to spend a considerable amount
of time to basic research in the field of chemical engineering in addition to my com-
pany duties and corporate research.
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volume-related phase boundary surface a= A/V
thermal diffusivity; a =k/(pC,)

area, surface

concentration, concentration difference

velocity of sound in a vacuum

heat capacity, mass-related

saturation concentration

characteristic diameter

bubble diameter, usually formulated as “Sauter mean diameter” d;,
Sauter mean diameter of gas bubbles and drops, respectively
particle diameter

vessel diameter, pipe diameter

diffusivity

effective axial dispersion coefficient

energy

enhancement factor in chemisorption; eq. (14.50)
activation energy in chemical reactions

efficiency factor of the absorption process (Section 10.3.2)
functional dependence

force

degree of humidity

acceleration due to gravity

mass flow

gravitational constant

heat transfer coefficient

height

base dimension of the amount of heat

Joule’s mechanical heat equivalent

reaction rate constant

thermal conductivity

proportionality constant (Section 8.5)

Boltzmann constant

X



kg gas-side mass transfer coefficient

ky liquid-side mass transfer coefficient

kia volume-related liquid-side mass transfer coefficient

kg flotation rate constant

K consistency index (Section 8.5)

1 characteristic length

L base dimension of length

m mass

m flow index (Section 8.5)

mol amount of substance

M base dimension of mass

n stirrer speed

N base dimension of amount of substance
number of stages

Ny normal stress (x =1 or 2); eq. (8.68, 8.69)

p, Ap pressure, pressure drop

P power, power of stirrer

q volume throughput

Q heat flow

r rank of the dimensional matrix
reaction rate

R heat of reaction

R universal gas constant

S cross-sectional area (< D?)

Si coalescence parameters (in i numbers)

t running time

T base dimension of time

T temperature

T absolute temperature

u tip speed (u= nnd)
parameter in standard representation (Chapter 8)

U over-all heat transfer coefficient (Example 23)

v velocity, superficial velocity

\ volume

w parameter in standard representation (Chapter 8)

z number

Greek symbols

a angle

§ temperature coefficient of density, eq. (8.14)
specific breakage energy (Example 30)

Y deformation

Yo temperature coefficient of viscosity, eq. (8.5)
shear rate, eq. (8.54)

A difference
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Indices
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thickness of film, layer, wall

gas hold-up in the liquid
mass-related power, € = P/pV

friction factor in pipe flow; eq. (3.8)
base dimension of temperature
contact angle

time constant (Chapter 8)

duration of time

macro-scale of turbulence

relaxation time (Section 8.5)
Kolmogorov’s micro-scale of turbulence (Section 10.1)
dynamic viscosity

electrophoretic mobility (Example 40)
scale factor, u = 1y/ly

kinematic viscosity

density

heat capacity, volume-related

surface tension, phase boundary tension
tensile strength (Example 30)

mean residence time, T=V/q

shear stress, eq. (8.54)

yield stress

portion (volume, mass)

numerical value (Chapter 8.2)

degree of fill

continuous phase
dispersed phase
end value

flock

gas (gaseous)
liquid

minimum
model-scale

start condition
particle

saturation value
height of the layer
solid, foam
condition at time t
technological-scale, full-scale
wall
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]
Introduction

A chemical engineer is generally concerned with the industrial implementation of
processes in which the chemical or microbiological conversion of material takes
place in conjunction with the transfer of mass, heat, and momentum. These proces-
ses are scale-dependent, i.e. they behave differently on a small scale (in laboratories or
pilot plants) and a large scale (in production). Also included are heterogeneous
chemical reactions and most unit operations. Understandably, chemical engineers
have always wanted to find ways of simulating these processes in models in order to
gain knowledge which will then assist them in designing new industrial plants.
Occasionally, they are faced with the same problem for another reason: an industrial
facility already exists but does not function properly, if at all, and suitable measure-
ments have to be carried out in order to discover the cause of these difficulties as
well as provide a solution.

Irrespective of whether the model involved represents a “scale-up” or a “scale-
down”, certain important questions will always apply:

¢ How small can the model be? Is one model sufficient or should tests be car-
ried out with models of different sizes?

e When must or when can physical properties differ? When must the measure-
ments be carried out on the model with the original system of materials?

e Which rules govern the adaptation of the process parameters in the model
measurements to those of the full-scale plant?

e Isitpossible to achieve complete similarity between the processes in the model
and those in its full-scale counterpart? If not: how should one proceed?

These questions touch on the theoretical fundamentals of models, these being based
on dimensional analysis. Although they have been used in the field of fluid dyna-
mics and heat transfer for more than a century — cars, aircraft, vessels and heat
exchangers were scaled up according to these principles — these methods have gai-
ned only a modest acceptance in chemical engineering. The reasons for this have
already been explained in the preface.

The importance of dimensional-analytical methodology for current applications
in this field can be best exemplified by practical examples. Therefore, the main
emphasis of this book lies on the integral treatment of chemical engineering prob-
lems by dimensional analysis.
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1 Introduction

From the area of mechanical process engineering, stirring in homogeneous and in
gassed fluids as well as the mixing of particulate matter are treated. Furthermore,
atomization of liquids with nozzles, production of liquid/liquid dispersions (emulsi-
ons) in emulsifiers and the grinding of solids in stirred ball mills is dealt with. As
peculiarities, scale-up procedures are presented for the flotation cells for waste water
purification, for the separation of aerosols in dust separators by means of inertial
forces as well for the temporal course of spin drying in centrifugal filters.

From the area of thermal process engineering, the mass and heat transfer in
stirred vessels and in bubble columns is treated. In the case of mass transfer in the
gas/liquid system, coalescence phenomena are also dealt with in detail. The prob-
lem of simultaneous mass and heat transfer is discussed in association with film
drying and in continuous electrophoresis.

In dealing with chemical process engineering, conducting chemical reactions in a
tubular reactor and in a packed bed reactor (solid-catalyzed reactions) is discussed.
In consecutive-competitive reactions between two liquid partners, a maximum pos-
sible selectivity is only achievable in a tubular reactor under the condition that back-
mixing of educts and products is completely prevented. The scale-up for such a pro-
cess is presented. Finally, the dimensional-analytical framework is presented for the
reaction rate of a fast chemical reaction in the gas/liquid system, which is to a cer-
tain degree limited by mass transfer.

Last but not least, in the final chapter it is demonstrated with a few examples that
different types of motions in the living world can also be described by dimensional
analysis. In this manner the validity range of the pertinent dimensionless numbers
can be given. The processes of motion in Nature are subjected to the same physical
framework conditions (restrictions) as the technological world.
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2
Dimensional Analysis

2.1
The Fundamental Principle

Dimensional analysis is based upon the recognition that a mathematical formula-
tion of a chemical or physical technological problem can be of general validity only
if it is dimensionally homogenous, i.e. if it is valid in any system of dimensions.

2.2
What is a Dimension?

A dimension is a purely qualitative description of a sensory perception of a physical ent-
ity or natural appearance. Length can be experienced as height, depth and breadth.
Mass presents itself as a light or heavy body and time as a short moment or a long period.
The dimension of length is Length (L), the dimension of a mass is Mass (M), and so on.

Each physical concept can be associated with a type of quantity and this, in turn,
can be assigned to a dimension. It can happen that different quantities display the
same dimension. Example: Diffusivity (D), thermal diffusivity (a) and kinematic vis-
cosity (v) all have the same dimension [L* T™"].

23
What is a Physical Quantity?

In contrast to a dimension, a physical quantity represents a quantitative description
of a physical quality:

physical quantity = numerical value x measuring unit

Example: A mass of 5 kg: m= 5 kg. The measuring unit of length can be a meter, a
foot, a cubit, a yardstick, a nautical mile, a light year, and so on. Measuring units of
energy are, for example, Joule, cal, eV. (It is therefore necessary to establish the mea-
suring units in an appropriate measuring system.)
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24
Base and Derived Quantities, Dimensional Constants

A distinction is made between base or primary quantities and the secondary quanti-
ties which are derived from them (derived quantities). Base quantities are based on
standards and are quantified by comparison with them. According to the Systeme
International d’ Unités (SI), mass is classified as a primary quantity instead of force,
which was used some forty years ago.

Secondary quantities are derived from primary ones according to physical laws,
e.g. velocity = length/time: [v] = L/T. Its coherent measuring unit is m/s. Coherence
of the measuring units means that the secondary quantities have to have only such
measuring units which correspond with per definitionem fixed primary ones and the-
refore present themselves as power products of themselves. Giving the velocity in
mph (miles per hour) would contradict this.

If a secondary quantity has been established by a physical law, it can happen that
it contradicts another one.

Example a

According to Newton’s 2nd law of motion, the force, F, is expressed as a product of
mass, m, and acceleration, a: F = m a, having the dimension of [M LT . According
to Newton’s law of gravitation, force is defined by F o« m; m,/r? thus leading to
completely another dimension [M? L™%. To remedy this, the gravitational constant G
— a dimensional constant — had to be introduced to ensure the dimensional homoge-
neity of the latter equation:

F=Gm;m, /rz.

GM'L’T?=6.673x 107" m?/(kg s?)

Example b

A similar example is the introduction of the universal gas constant, R, which ensu-
res that in the perfect gas equation of state p V = n R T the already fixed secondary
unit for work

W =p V [M L? T is not offended.

RML*T?N"' ©7"=8.313 J/(mol K)

Another class of derived quantities is represented by the coefficients in transfer
equations for momentum, mass and heat. They were also established by the respec-
tive physical laws — therefore they are often called “defined quantities” — and can
only be determined via measurement of their constituents.

In chemical process engineering it frequently happens that new secondary quan-
tities have to be introduced. The dimensions and the coherent measuring units of
them can easily be fixed. Example: volume-related liquid-side mass transfer coeffici-
ent kya [T
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2.5
Dimensional Systems

A dimensional system consists of all the primary and secondary dimensions and
corresponding measuring units. The currently used “Systeme International d’unités
(SI) is based on seven base dimensions. They are presented in Table 1 together with
their corresponding base units.

Table 2 refers to some very frequently used secondary measuring units which
have been named after famous researchers.

Table 1 Base quantities, their dimensions and units according to Sl

Base quantity Base dimension Sl base unit
length L m meter
mass M kg kilogram
time T s second
thermodynamic temperature (€] K kelvin
amount of substance N mol  mole
electric current I A ampere
luminous intensity ] cd candela

Table2 Important secondary measuring units in mechanical engineering, named after famous
researchers

Sec. quantity Dimension Measuring unit Name
force M LT kgms? =N Newton
pressure ML T kgm™ s> =Pa Pascal
energy MI12T™? kgm?s? =] Joule

power ML2T™? kgm?s? =W Watt
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2 Dimensional Analysis

Table3 Commonly used secondary quantities and their respective dimensions according to the
currently used Sl units in mechanical and thermal problems

Physical entity Dimension
area 12

volume L}

angular velocity, shear rate, frequency T
velocity LT™
acceleration LT
kinematic viscosity, diffusivity, thermal diffusivity LTt
density ML
surface tension MT™
dynamic viscosity ML'T™
momentum MLT™
force M LT
pressure, tension ML1T™?
angular momentum ML2T™
mechanical energy, work, torque ML2T™?
power ML2T™
specific heat L2120
heat conductivity MLT? @™
heat transfer coefficient MT? O™

If, in the formulation of a problem, only the base dimensions [M, L, T] occur in the
dimensions of the involved quantities, then it is a mechanical problem. If [©]
occurs, then it is a thermal problem and if [N] occurs it is a chemical problem.

In a chemical reaction the molecules (or the atoms) of the reaction partners react
with each other and not their masses. Their number (amount) results from the
mass of the respective substance according to its molecular mass. One mole (SI
unit: mole) of a chemically pure compound consists of N = 6.022 x 10** entities
(molecules, atoms). The information about the amount of substance is obtained by
dividing the mass of the chemically pure substance by its molecular mass. To put it
even more precisely: In the reaction between gaseous hydrogen and chlorine one
mole of hydrogen reacts with one mole of chlorine according to the equation

H2 + Clz =2 HCl
and two moles of hydrochloric acid are produced. Consequently, it is completely

insignificant that with respect to the masses 2 g of H, reacted with 71 g of Cl, to
produce 73 g of HCL
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2.6
Dimensional Homogeneity of a Physical Content

It has already been emphasized that a physical relationship can be of general validity
only if it is formulated dimensionally homogeneously, i.e. if it is valid with any system
of dimensions (section 2.1). The aim of dimensional analysis is to check whether
the physical content under consideration can be formulated in a dimensionally
homogeneous manner or not. The procedure necessary to accomplish this consists
of two parts:

a) Initially, all physical parameters necessary to describe the problem are listed.
This so-called “relevance list” of the problem consists of the quantity in que-
stion (as a rule only one) and all the parameters which influence it. The target
quantity is the only dependent variable and the influencing parameters
should be primarily independent of each other. Example: Out of material pro-
perties u, v and p only two should be chosen, because they are linked togeth-
er by the definition equation: v=u/p.

b) In the second step, the dimensional homogeneity of the physical content is
checked by transferring it into a dimensionless form. This is the foundation
of the so-called pi theorem (see section 2.7). The dimensional homogeneity
comes to the dimensionless formulation of the physical content in question.

Note: A dimensionless expression is dimensionally homogeneous!
This point will be made clear by three examples.

Example 1: What determines the period of oscillation of a pendulum?

We first draw a sketch depicting a pendulum I/4/774774
and write down all the quantities which could
be involved in this question [1]. It may be assu-
med that the period of oscillation of a pendu-
lum depends on the length and mass of the
pendulum, the gravitational acceleration and |
the amplitude of the swing:

physical quantity Symbol Dimension g m
Period of oscillation 0 T

Length of pendulum 1 L

Mass of pendulum m M

Gravitational acceleration g T

Amplitude (angle) o -

7
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Our aim is to establish 0 as a function of |, m, gand o :
0=f(, m,g a) (2.1)

Can this dependency be dimensionally homogeneous? No! The first thing that now
becomes clear is that the base dimension of mass [M] only occurs in the mass m
itself. Changing its measuring unit, e.g. from kilograms to pounds, would change
the numerical value of the function. This is unacceptable. Either our list should
include a further variable containing M, or mass is not a relevant variable. If we
assume — by simplification™ — the latter, the above relationship is reduced to:

0=1(, g a) (2:2)

Both 1 and g contain the base dimension of length. When combined as a ratio 1/g
they become dimensionless with respect to L and are therefore independent of chan-
ges in the base dimension of length:

0=f (/g a) (2.3)

On the left-hand side of the equation we have the dimension T and on the right T2,
To remedy this, we will have to write 1/I/g. This expression will keep its dimension
[T] only if it remains unchanged, therefore we have to put it as a constant in front of
the function f. Because a is dimensionless anyway, the final result of the dimensio-
nal analysis reads:

0=/1/g fla) = 06/g/l=f(0) (2.4)

The dependency between four dimensional quantities, containing two base dimen-
sions (L and T) in their dimensions, is reduced to a 4 — 2 = 2 parametric relationship
between dimensionless expressions (“numbers”)!

This equation is the only statement that dimensional analysis can offer in this
case. It is not capable of producing information on the form of f. The integration of
Newton'’s equation of motion for small amplitudes leads to f (&) = 2x; the period of
oscillation is then independent of a. The relationship can now be expressed as:

0 \/g/l=2n (2.5)

The left-hand side of the expression is a dimensionless number, its numerical value
being 2.

) In case of a real pendulum the density and viscosity of air should also be introduced into the
relevance list. Both contain mass in their dimensions. However, this would unnecessarily
complicate the problem at this step. Therefore we will consider a physical pendulum with a
point mass in a vacuum.



2.6 Dimensional Homogeneity of a Physical Content

The elegant solution of this example should not tempt the reader to believe that
dimensional analysis can solve every problem solely by a theoretical consideration.
To treat this example by dimensional analysis, the acceleration due to gravity (g =
9.81 m s7%) had to be known, this being calculated from the gravitational law. Sir
Isaak Newton derived it from Kepler's laws of planet movements. Bridgman’s ([1],
p-12) comment on this situation is particularly appropriate:

"The problem cannot be solved by the philosopher in his armchair, but the know-
ledge involved was gathered only by someone at some time soiling his hands with
direct contact”.

Example 2: Dripping of a liquid from a capillary
The simplest method to produce droplets is to drip a liquid slowly ©

out of a capillary under the influence of gravity. Due to the low
shear rate, the viscosity of the liquid will, as a rule, have no
influence. In this case the target quantity, particle diameter (here:
droplet diameter) d,,, will depend only on the wetted capillary di-
ameter d, the surface tension o and the weight gp of the dripping
liquid:

physical quantity symbol dimension
droplet diameter dp L
capillary diameter d L

surface tension o MT™
weight of the liquid gp ML?2T™?

Anticipating d,,/d as the “target dimensionless number”, the remaining three quan-
tities (d, o, gp) can only produce one additional dimensionless number.

By the quotient 6/gp [L?] two base dimensions [M, T] are eliminated at once, so
that by the division of this expression by d” the dimensionless number

2
ngd =Bd (2.6)

is formed, which is named Bond number Bd. The above dimensional relationship
is, therefore, reduced to the functional dependence

d,/d=f(Bd) (2.7
Eq. (2.7) represents the dimensionless formulated dependence of the correlation be-
tween the dimensional quantities in the above table. If the function fis determined

with measurements, then one speaks of the process equation. This reads here as [2]:

d,/d=1.6Bd"’ (2.8)

9
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The essence of the scale-up will be demonstrated with a slightly more compilicated
example:

Example 3: Correlation between the meat size and roasting time

and, in order to facilitate understanding, we
should draw a sketch. At high oven tempera-

Firstly, we have to recall the physical situation
tures heat is transferred from the heating ele- m
ments to the meat surface by both radiation
and heat convection. From there it is transfer- To
red solely by unsteady-state heat conduction
which surely represents the rate limiting step T
of the heating process. |
The higher the thermal conductivity, k, of
the body, the faster the heat spreads out. The
higher its volume-related heat capacity, pC,, the slower the heat transfer. Therefore,
the unsteady-state heat conduction is characterized by only one material property,
the thermal diffusivity, a = k/pC,, of the body.
Roasting is an endothermic process. The meat is ready when a certain tempera-
ture distribution (T) is reached within it. The target quantity is the time duration, ©,

necessary to achieve this temperature field.
After these considerations we are able to precisely draw up the relevance list:

physical quantity symbol dimension
roasting time 0 T

meat surface A L
thermal diffusivity a 2Tt
surface temperature Ty (€]
temperature distribution T (€]

The base dimension of temperature, ®, appears only in two quantities. They can
therefore be contained in only one dimensionless quantity:

Hl = T/TO or (To— T)/TO (2.9)
The residual three quantities form one additional dimensionless number:
I, = a6/A = Fo (2.10)

In the theory of heat transfer, IT, is known as the Fourier number, Fo. Now, the
roasting process is presented in a two-dimensional framework:

T/T, = f (Fo) (2.11)



2.6 Dimensional Homogeneity of a Physical Content

In this example, five dimensional quantities produce two dimensionless numbers. This
was to be expected because their dimensions contain three base dimensions: 5 -3 =2.

The question concerning the correlation between the roasting time and the meat
size can now be easily answered, even without explicitly knowing the function f. To
reach the same temperature distribution T/Ty or (Ty —T)/T, in differently sized
bodies, the dimensionless number Fo = af/A must display the same (= idem, identi-
cal) numerical value. Because thermal diffusivity a remains unaltered in the meat of
same species (a = idem), this leads to

T/Ty =idem — Fo=afB/A=idem — q/A=idem - B A (2.12)

This statement is obviously useless as a scale-up rule because meat is bought accor-
ding to weight and not to surface. One can easily remedy this. In bodies, the follo-
wing correlation between mass, m, surface, A, and volume, V, exists:

m=pV e pL? oc pA*/? (Ao 1?)
Therefore, from p=idem it follows
Ao m?? and thus 0 o< A oc m*/?
From this correlation we obtain the scale-up rule
0,/0; o< (m,/m;)*"? (2.13)

This is the scale-up criterion for the roasting time of meat of the same kind (a, p =
idem). It states that in doubling the mass of meat, the cooking time will increase by
2’ =1.58.

G.B. West [3] refers to “inferior” cookbooks which simply say something like “20
minutes per pound”, implying a linear relationship with weight. However, there
exist “superior” cookbooks, such as the “Better Homes and Gardens Cookbook” (Des
Moines Meredith Corp. 1962), which recognize the nonlinear nature of this relation-
ship. The graphical representation of measurements given in this book confirms
the relationship

0 o m0.6

which is very close to the theoretical evaluation giving 0 e m*? = m®’.

These three transparent and easy to understand examples clearly show how dimen-
sional analysis deals with specific problems and what conclusions it allows. Now, it
should be easier to understand Lord Rayleigh’s sarcastic comment with which he
began his short essay on “The Principle of Similitude” [4]:

mn
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“I have often been impressed by the scanty attention paid even by original workers
in physics to the great principle of similitude. It happens not infrequently that
results in the form of “laws” are put forward as novelties on the basis of elaborate
experiments, which might have been predicted a priori afier a few minutes’ consi-
deration”.

From the above examples we can also learn that the transformation of a physical
content from a dimensional into a dimensionless form is automatically accompa-
nied by an essential compression of the statement: The set of the dimensionless num-
bers is smaller than the set of the quantities contained in them, but it describes the
problem equally comprehensively. (In the third example the dependency between 5
dimensional parameters is reduced to a dependency between only 2 demensionsless
numbers!) This is the proof of the so-called pi theorem (pi after II, the sign used for
products), which is formulated in the next Section:

2.7
The pi Theorem

e Every physical relationship between n physical quantities can be reduced to a
relationship between m= n — r mutually independent dimensionless groups,
whereby r stands for the rank of the dimensional matrix, made up of the
physical quantities in question and generally equal to (or in some few cases
smaller than) the number of the base quantities contained in their secondary
dimensions.

For mathematical proofs see e.g. Pawlowski [5] und Gértler [6].

The pi theorem is often associated with the name of E. Buckingham, because he
introduced this term in 1914. However, the proof of this theorem was already
accomplished in the course of a mathematical analysis of partial differential equa-
tions by A. Federmann in 1911. (See [6], section 4.6: Historical remarks concerning
the pi theorem.)

The first important advantage of using dimensional analysis exists in the essential
compression of the statement. The second important advantage of its use is related
to the safeguarding of a secure scale-up. This will be convincingly shown in the next
two examples.
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3
Generation of Pi-sets by Matrix Transformation

As a rule, more than two dimensionless numbers are necessary to describe a phys-
ico-technological problem; they cannot be produced as shown in the first three
examples. The classical method to approach this problem involved a solution of a
system of linear algebraic equations. They were formed separately for each of the
base dimensions by exponents with which they appeared in the physical quantities.
J. Pawlowski [S] replaced this relatively awkward and involved method by a simple
and transparent matrix transformation (“equivalence transformation”) which will be
presented in detail in the next example.

Example 4: The pressure drop of a homogeneous fluid in a straight, smooth pipe
(ignoring the inlet effects)

Here, the relevance list consists of the following elements:

target quantity: pressure drop, Ap
geometric parameters: diameter, d, and length, 1, of the pipe
material parameters: density, p, and kinematic viscosity, v, of the fluid
process related parameter: volume-related throughput, q
{Ap;d, L p, v;q} (3.1

With the dimensions of these quantities a dimensional matrix is formed. Their
columns are assigned to the individual physical quantities and the rows to the expo-
nents with which the base dimensions appear in the respective dimensions of these
quantities (example: Ap [M' L™' T™%)). This dimensional matrix is subdivided into a
quadratic core matrix and a residual matrix, whereby the rank r of the matrix (here
r=3) in most cases corresponds to the number of the base dimensions appearing in
the dimensions of the physical quantities.

Ap q d I p v
mass M 1 0 0 0 1
length L -1 3 1 1 -3 2
time T -2 -1 0 0 0 -1

core matrix residual matrix
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The nature of the steps which have to be carried out now makes this dimensional
matrix less than ideal because it is necessary to know that each of the individual ele-
ments of the residual matrix will appear in only one of the dimensionless numbers,
while the elements of the core matrix may appear as “fillers” in the denominators of
all of them. The residual matrix should therefore be loaded with essential variables
such as the target quantity and the most important physical properties and process-
related parameters. Variables with an, as yet, uncertain influence on the process
must also be included in this group. If, later, these variables are found to be irrele-
vant, only the dimensionless number concerned will have to be deleted while lea-
ving the others unaltered.

Since the core matrix has to be transformed into a unity matrix (zero-free main
diagonal, otherwise zeros) the “fillers” should be arranged in such a way as to facili-
tate a minimum of linear transformations.

The following reorganization of the above dimensional matrix fulfills both of
these aims:

p d v Ap q I

mass M 1 0 0 1 0 0

length L -3 1 2 -1 3 1

time T 0 0 -1 -2 -1 0
core matrix residual matrix

Now, with the first linear transformation of the rows the so-called Gauflian algo-
rithm is carried out (zero-free main diagonal, beneath it zeros). It determines the
rank of the matrix. The rank r = 3 is confirmed.

p d v Ap q I
Z;=M 1 0 0 1 0 0
Z,=3M+L 0 1 2 2 3 1
Z3;=-T 0 0 1 2 1 0

core matrix residual matrix

However, in this procedure, it could happen that a zero-free diagonal does not arise.
Before concluding that the rank of the matrix is in fact r < 3, one should examine
whether another arrangement of the core matrix makes a zero-free main diagonal
possible.

Now, only one further linear transformation of the rows is necessary to transform
the core matrix into a unity matrix, see the matrix below.

When generating dimensionless numbers, each element of the residual matrix
forms the numerator of a fraction while its denominator consists of the fillers from
the unity matrix with the exponents indicated in the residual matrix, see eq. (3.2).
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p d v Ap q I
7, =7, 1 0 0 1 0 0
2y=7,-274 0 1 0 -2 1 1
Z=17, 0 0 1 2 1 0

unity matrix residual matrix

2
m=_2p__Aapd 1 (3.2)

j=—=P __2P% =9 -9 =1 _
pld V2~ pV? 2= 00T T dy 3 E p0dhe T d
The dimensionless number IT; does not usually occur as a target number for Ap.
It has the disadvantage that it contains the essential physical property, kinematic
viscosity v, which is already contained in the process number (which is where it
belongs). This disadvantage can easily be overcome by appropriately combining the
dimensionless numbers I1; and IT,. This results in the well-known Euler number

Ap d*
pq’

Eu=I1, I1,2

(3.3)

which is often combined with IT; = L/d to obtain an intensively formulated target num-
ber. This takes into account that in sufficiently long pipes the effects of the inlet can
certainly be ignored and the proportionality Ap o< 1 exists. This combination of
dimensionless numbers is called the friction factor in pipe flow C:

Apd*4g

Yo (3.4)

C=Fud/l=IL IL, 210, =

e Note: The pi-theorem only stipulates the number of the dimensionless num-

bers and not their form. Their form is laid down by the user, because it must
suit the physics of the process and be suitable for the evaluation and presen-
tation of the experimental data.
The structure of the dimensionless numbers depends on the variables contai-
ned in the core matrix. The Euler number, obtained by combining I1; and II,
in the example above, would have been obtained automatically if v and q had
been exchanged in the core matrix.

e Note: All IT sets obtained from one and the same relevance list are equivalent
to each other and can be mutually transformed at pleasure!

The dimensionless number IT, is, in fact, the well-known Reynolds number, Re,
even though it appears in another form here. Now, we will explain the structure that
a dimensionless number must have in order to be called a Reynolds number. (This
example is equally valid for all other named dimensionless groups.) The Reynolds
number is defined as being any dimensionless number combining a characteristic
velocity, v, and a characteristic measurement of length, 1, with the kinematic viscosity
of the fluid, v = u/p. The following dimensionless numbers are equally capable of
meeting these requirements:

15
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ReEVlTp:VVl 2% Lnqd-nd (3.5)
Here, v is interpreted as being either a superficial velocity, v= q/S o q/D? or the tip
speed of the stirrer, u o< n d; n is stirrer speed, d is stirrer diameter.

This method of compiling a complete set of dimensionless numbers makes it clear
that the numbers formed in this way cannot contain numerical values or any other
constant. These appear in dimensionless groups only when they are established and
interpreted as ratios on the basis of known physical interrelations. Examples:

Re=mn d?/v where 7t n d is the tip speed and
Eu=Ap/(v*p/2)  where v* p/2 is the kinetic energy. (3.6)

Since such expressions are of the same value as the analytically derived ones, it is
always necessary to present the definition!

In the above-mentioned case of the pressure drop of the volume flow in a straight
pipe, this method of compiling a complete set of dimensionless numbers produces
the relationship

f(Eud/,Re)=0 — f(C,Re)=0 with T=Eud/l (3.7)

The information contained in this relationship is the maximum that dimensional
analysis can offer on the basis of a relevance list, which we assumed to be complete.
Dimensional analysis cannot provide any information about the form of the func-
tion f, i.e., the sort of pi-relationship involved. This information can only be obtained
experimentally or by some additional theoretical considerations.

In their famous study Stanton and Pannell [7] evaluated the process equation of
this problem f (Eu d/l, Re) = 0 by measurements. Fig. 1 shows the result of their
work which impressively demonstrates the significance of the Reynolds number for
pipe flow. The remark of B. Eck [8] hits the nail on the head:

v WATER d =1.255 cm
4.8 4 " 0.7125
. " 0.361
o L] " 2.855
o v 1.255
]
2 o AR 2.855
a " 0.7125
i o 0.361
3.2 ° 12,62
-— Theoretical curve
2.44 for laminar flow
54 Y
A}
"'vw, ey, “
= R £ YN
1.6 %oy o .
0.8 T T T T T T
103 2 5 104 2 5 105 Re=vdi

Fig. 1 Pressure drop characteristic of a straight, smooth pipe; after [7].
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"If one represented — as it was once usual — C as a function of the velocity v, one
would obtain not a curve, but a galaxy. Here, the Reynold's law must strike even
a beginner with an elemental force”.

€ is the “friction factor”, which is defined here (according to physical interrelation)
as follows:

Ap
(p/2)v*
The drawn-in curve is valid for the laminar flow range (Re < 2300) and corresponds
to the analytical expression (“process equation”)

2Apd* g

L o §= 124 Eudl (3.8)

d=2(m/4)

L =64Re" resp. {Re=64 (3.9)

This connection could have been clearly demonstrated had the authors chosen to
present their test results in a double-logarithmical plot; this would have produced a
straight line with a slope of -1 in this range of Re! CRe can be viewed as a new
dimensionless number that does not include the fluid density, p:

_2Ap d vdp 2Apd®

CRe = W T T— V!./t]. =64 (310)

It is only with the pi-relationship that the relevance to the problem and the operatio-
nal range of individual variables becomes clear. Only now are we able to clearly
distinguish between the laminar and the turbulent range. (The scattering of the
measuring points around Re = 2300 makes it clear that in smooth pipes the turbu-
lence is often delayed.)

This example also shows that the pi-set compiled on the basis of the relevance list
does no more than define the maximum pi-space, which may well shrink at the
insight gained by measurements.

In the transition range (Re = 2.3 x 10° — 1.0 x 10°) the following process equations
are valid:

€ =0.3164 Re *® Re< 8x10*  (Blasius)
=0. +0. e e<1.5x ermann .
T =0.0054+0.396 Re™®® Re<1.5x10° (H 3.11

In the turbulent flow range, which appears in industrially rough (= smooth) pipes at
Re > 10°, the following applies:

T = const (3.12)

With respect to the dependence Ap(v) the following holds:

laminar range (o< Re™) Ap o< v
transition range (o< Re®?)  Apeocv'”’
turbulent range  ( =const)  Ap e V2

17
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Later on, Nikuradse [9] examined these correlations for artificially roughened pipes
(by sticking sand particles onto the inner wall surface) and represented them in a pi-
space extended by the geometrical number d,/d. He and later researchers, for exam-
ple [10], were primarily interested in the transition range of the Re number, where
the wall roughness is of the same order of magnitude as the wall boundary layer.

Before the experimental data of Fig. 1 will be discussed in detail with respect to

the scale-up, two important conclusions can be derived from the facts presented so
far:

1. The fact that the analytical presentations of the pi-relationships encountered
in engineering literature often take the shape of power products does not
stem from certain laws inherent to dimensional analysis. It can be simply
explained by the engineer’s preference for depicting test results in double-
logarithmic plots. Curve sections which can be approximated as straight lines
are then analytically expressed as power products. Where this proves less
than easy, the engineer will often be satisfied with the curves alone, cf. Fig 1.

2. The “benefits” of dimensional analysis are often discussed. The above exam-
ple provides a welcome opportunity to make the following comments. The
five-parametrical dimensional relationship

{Ap/l;d; p, v, q}

can be represented by means of dimensional analysis as {(Re) and plotted as a single
curve (Fig. 1). If we wanted to represent this relationship in a dimensional way and
avoid creating a “galaxy” at the same time [8], we would need 25 diagrams with 5
curves in each! If we had assumed that only 5 measurements per curve were suffici-
ent, the graphic representation of this problem still would have required 625 measu-
rements. The enormous savings in time and energy made possible by the applica-
tion of dimensional analysis are consequently easy to appreciate. These significant
advantages have already been pointed out by Langhaar [11].
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4
Scale-Invariance of the Pi-space — the Foundation of the Scale-up

It has already been pointed out that using dimensional analysis to handle a physical
problem and, consequently, to present it in the framework of a complete set of
dimensionless numbers, is the only sure way of producing a simple and reliable
scale-up from the small-scale model to the full-scale technological plant. The theory
of models states that:

e Two processes may be considered completely similar if they take place in a
similar geometrical space and if all the dimensionless numbers necessary to
describe them have the same numerical value (I1;= idem).

This statement is supported by the results shown in Fig. 1. The researchers carried
out their measurements in smooth pipes with diameters d = 0.36 — 12.63 cm, the-
reby changing the scale in the range of 1 : 35. Furthermore, the physical properties
of the fluid tested (water or air) varied widely. Nevertheless, the relationship {(Re)
did not display this change: Every numerical value of Re still corresponded to a spe-
cific numerical value of T! The pi-space is scale-independent, it is scale invariant!
The pi-relationship presented is therefore valid not only for the examined laboratory
devices but also for any other geometrically similar arrangement:

e Every point in a pi-framework, determined by the pi-relationship, corre-
sponds to an infinite number of possible implementations.

This aspect is of special importance with respect to change in the linear dimension,
because it is the foundation of a reliable scale-up.

With these facts the distinction between the pi-space and the original x-space is
particularly clear. In a x-space f (x;) = 0, which is constituted of dimensional quanti-
ties in the representation

X1 =f(xz) X;j=const,

each point of the (x;, x,)-space corresponds to solely one realization.

This characteristic of pi-representation represents the basis of the concept of simi-
larity based on dimensional analysis: Processes which are described by the same pi-
relationship are considered similar to each other if they correspond to the same
point in the pi-framework. From the standpoint of dimensional analysis it is there-
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fore completely insignificant whether the dimensionless numbers in question can
be interpreted as ratios of forces, flows and so on. The question concerning the
equality of these proportions is completely irrelevant.

Two realizations of the same physical interrelation are considered similar (com-
plete similarity), when m — 1 dimensionless numbers of the m-dimensional pi-space
have the same numerical value (pi = idem), because the m-th pi-number will then
automatically also have the same numerical value.

To exercise the scale-up procedure already on this simple example of Fig. 1, let us
imagine a pipeline in which a certain fluid (natural gas or crude oil) with a certain
volume-related throughput, q, should be conveyed. Our aim is to find the pressure
drop, Ap, of the fluid flow in the pipeline in order to design pumps and compres-
sors.

We start by building a geometrically similar small-scale model of the technical
pipeline. We already know the physical properties of the fluid, its throughput as well
as the dimensions of the industrial plant (index ) and therefore we also have the
numerical value for Rer in operation. The same numerical value can be kept con-
stant in the test apparatus (index y;) by the correct choice of conveying device and
model fluid:

Vl)T _ (Vl

Re=idem — Rer=Rey = (% (4.1)
According to our knowledge of the pertinent pi-space (Fig. 1), Re = idem implies Eu=
idem. The numerical value of the Euler number Euy,, measured in the model-scale at
the given Rey value, therefore corresponds to that of the full-scale plant. This then
allows us to determine the numerical value of Apr in the industrial plant from the
numerical value of Euy, in the model and the given operational parameters:

Eu=idem — Eur = Euy — (A_p2> = (A_pz) (4.2)

pv/r pv/Mm

Of course, the concept of complete similarity does not guarantee that a process will
be the same in the model as in the full-scale version in every respect; it is only the
same with respect to particular aspect under examination, which has been described
by the appropriate pi- relationship. In order to demonstrate this fact with the help of
the above example, it should be remembered that the flow conditions in two smooth
pipes of different scales should be considered similar when Re = idem and, accor-
ding to the pressure drop characteristics, will therefore have the same numerical
value of € = Eu d/1. However, this does not mean that heat transfer conditions preva-
lent in the two pipes are the same. For that to be the case, the relevant pi-relation-
ship, Nu = f (Re, Pr), requires that both the Reynolds number and the Prandtl num-
ber have the same numerical value (temperature-independent physical properties of
the medium being supposed).

The more comprehensive the similarity demanded between the model (y) and
the full-scale device (1) and the greater the

scale-up factor u = ly/ly (1 - any characteristic length) (4.3)
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the harder it is to perform the scale-up. This undertaking could even fail completely
if a model material system with the appropriate physical properties cannot be obtai-
ned. A further difficulty is that a scale-up involving large changes of scale may cause
changes to the pi-space. An example here is the case of forced non-isothermal flow,
in which progression in scale results in free convection and consequently the Gras-
hof number, Gr = B AT I’ g/v*, becomes relevant to the problem. As an opposite
example, it should be mentioned that with progression of the scaling down the pipe
diameter, surface phenomena will sometimes come into play (e.g. the capillarity
effect). In this case, a further pi-number appears which contains the surface tension
0 (Weber number, We; Bond number, Bd).

The following example has been chosen because it impressively demonstrates the
scale-invariance of the pi-space. Besides this, in the matrix transformation we will
encounter a reduction of the rank r of the matrix. This will enable us to understand
why, in the definition of the pi-theorem (section 2.7), it was pointed out that the
rank of the matrix does not always equals the number of base dimensions contained
in the dimensions of the respective physical quantities.

Example 5:  Heat transfer from a heated wire to an air stream

This example, taken from [12], belongs to the field of heat transfer by convection.
Here the heat transfer coefficient, h, represents the target quantity. This quantity
can be determined only via the general heat transfer equation

Q=hAAT (4.4)

Electrically heated wires and pipes with the diameter, d, are mounted horizontally
and are cooled by an air stream. The relevance list reads:

target quantity: heat transfer coefficient, h
geometric parameters: diameter, d, of the wire or pipe
material parameter: density, p, and kin. viscosity, v ; heat conductivity, k;

volume-related heat capacity, pCp, of the gas
process-related parameters:  flow velocity, v, of the gas

{h; d; p, v, k, pCy; v} (4.5)

A conveniently constructed dimensional matrix (for dimensions see Table 3) con-
tains a core matrix which is transformed in three steps into the unity matrix. It just
so happens that in the last linear transformation the 1. row and the p-columns eli-
minate. This represents a reduction of the rank, r, of the matrix.

21
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p d v k h pCp v
mass M 1 0 0 1 1 1 0
length L -3 1 1 1 0 -1 2
time T 0 0 -1 -3 -3 -2 -1
temperature © 0 0 0 -1 -1 -1 0
M 1 0 0 1 1 0
3M+L 0 1 1 4 3 2 2
T 0 0 -1 -3 -3 -2 -1
(C] 0 0 0 -1 -1 -1 0
M 1 0 0 1 1 1 0
3M+L+T 0 1 0 1 0 0 1
-T 0 0 1 3 3 2 1
(S 0 0 0 -1 -1 -1 0
M+0®
3M+L-T+0© 1 0 0 -1 -1 1
-T+30 0 1 0 0 -1 1
-0 0 0 1 1 1

This does not mean that the gas density, p, is irrelevant, but that it has been just
fully taken into account by the kinematic viscosity v= p/p. If we would have taken
the dynamic viscosity, u, instead of the kinematic one, v, this elimination would not
have occurred, because u [M L™ T™'] contains mass in its dimensions. However, the
result would have been the same: In both cases 7 — 4 = 6 — 3 = 3 pi-numbers result.
These are

II, = }% = Nu — Nusselt number (4.6)

I, = pCPTdV - IL ;= kap v_ HTCP = Pr — Prandtl number (4.7)

;= % = Re! — Reynolds number (4.8)
The functional dependence

Nu=f(Pr, Re) (4.9)
is reduced when working with air to

Nu=f(Re). (4.10)

This is because the Pr number here is largely temperature independent and there-
fore has a constant numerical value: Pr = 0.70 = const.

Functional dependence Nu = f (Re) is represented in Fig. 2. These measurements
were performed with wires of d = 0.0189-1.00 mm and pipes of d = 2.99-150.0 mm.
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3 Legend | Diameter Legend | Diameter
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Fig. 2 Heattransfer characteristic of wires and pipes streamed crossways by the air flow; from [12]

This corresponded to a scale-range of =1 : 8.000. Therefore, with the result in Fig.
2, the scale-invariance is particularly impressively proved.
The process equations in this pi-space read [13]:

Nu= 0.43 + 0.48 Re®® 1<Re<4x10’ (4.11)
Nu o< Re®® Re > 2 x 10° (4.12)
U. Grigull [14] pointed out that the correspondence h o v** means the predomi-

nance of the laminar boundary layer, whereas h o v*® refers to the prevailing of the
turbulent boundary layer.
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5
Important Tips Concerning the Compilation of the Problem
Relevance List

5.1
Treatment of Universal Physical Constants

The relevance list must also include universal physical constants such as the univer-
sal gas constant, R, the speed of light in a vacuum, ¢, or even the acceleration of a
gravitational field (on Earth the acceleration due to gravity, g), if these constants
influence the process concerned. The fact that a relevant physical quantity is a con-
stant can never be a reason not to include it in the relevance list! By failing to consi-
der the relevance of gravitational acceleration, the chemical engineer may find he
has made a serious mistake!

Failing to consider gravitational acceleration when dealing with problems of pro-
cess engineering is clearly not new. Lord Rayleigh [4] complained bitterly saying:

“I refer to the manner in which gravity is treated. When the question under consi-
deration depends essentially upon gravity, the symbol of gravity (g) makes no
appearance, but when gravity does not enter the question at all, g obtrudes itself
conspicuously”.

This is all the more surprising in view of the fact that the relevance of this quantity
is easy enough to recognize if one asks the following question:

e Would the process function differently if it took place on the moon instead of
on Earth?

If the answer to this question is affirmative, g is a relevant variable.
In fluid dynamics g is often effective in connection with p or with Ap as weight
or as a weight difference.

5.2
Introduction of Intermediate Quantities

Relevance lists of some problems contain a whole host of parameters. This makes
the elaboration of the process characteristic a difficult endeavor. In some cases a
closer look at a problem (or previous experience) facilitates a reduction of the num-
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ber of physical quantities in the relevance list. This is the case when some relevant
variables affect the process by way of a so-called intermediate quantity. Assuming that
this intermediate quantity can be measured experimentally, it should be included in
the problem relevance list, if this facilitates the removal of more than one quantity
from the list. If, e.g., the target quantity, y, depends on five parameters

y=1i (X1, X2, X3, X4, Xs),

and three of which can be replaced by an intermediate quantity z

z=f (X2, X3, X4),

then the introduction of z reduces the functional dependence by two parameters to

y=f3 (X1, Z, Xs).

In the following, a few examples regarding this are mentioned.

A universally known intermediate quantity is the flow velocity, v, in pipes or the
so-called superficial gas velocity, vg, in stirring vessels at gassing or in bubble
columns:

_ volume throughputq = q

_ 2
~ cross—sectional area S D2 §=mD7/4

Its introduction into the relevance list replaces two quantities: throughput, q, and
diameter, D.

A settling process (sedimentation) depends on the parameters of the disperse
phase. They can be substituted by the sedimentation velocity v

ve=f(dp, 8AP, 9, W)

(dp — mean particle diameter, gAp — weight difference, @, — volume portion of the
solid phase, u — dynamic density of the liquid.)

In some cases, e.g. in the flotation process, Example 7, it is possible to replace a
great many influencing parameters by only one or two intermediate quantities.
Then, it is legitimate to speak of intermediate quantities as of “lumped parameters”.

A tableting process depends on the physical parameters, as e.g. mean particle di-
ameter d,, bulk density (porosity), flow behaviour (lubricating ability) of the powder,
which depends also on humidity. These physical properties can be replaced by the
lumped parameter powder compressibility « [136].

The importance of introducing intermediate quantities will now be demonstrated
by two elegant examples.
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Example 6: Homogenization of liquid mixtures with different densities and viscosi-
ties

The mixing time, 8, needed for a complete homogenization of two Newtonian lig-
uids, one resting at the start in a layer on top of the other, is normally determined by
a decolorization method. For a given stirrer, installed in a vessel of known geometry,
and for a material system without density and viscosity differences, the mixing time
depends on the stirrer diameter, d, (as the characteristic geometric parameter in stir-
ring); density, p, dynamic viscosity, u, stirrer speed, n:

{6; d; p, w; n} (5.1)

This 5-parametric dimensional space leads to the 2-parametric mixing time charac-
teristic:

nO=f(Re) where Re=nd’p/u=nd*/v (5.2)

For a material system with density and viscosity differences, the 5-parametric rele-
vance list, eq. (5.1), has to be extended by the physical properties of the second
mixing component, by the volume ratio of both phases, ¢ = V,/V;, and — inevitably
— by the weight difference, gAp, due to the prevailing density differences, to a 9-
parametric dimensional space [15]:

{6; d; P1, W1, P2, U2, O; gAp, H} (5.3)

This leads to a mixing time characteristic consisting of six pi-numbers:

n0=f(Re, Ar, p2/p1, Wa/tl1, @) (5.4)

Herein Re = n d*/v; — Reynolds number and Ar = gAp d*/(p; vi%) — Archimedes
number.

In a meticulous visual observation of this mixing process (the slow disappearance
of the schlieren as a result of the balancing of the density differences) one will note
that the coarse macro-mixing is quickly completed as compared with the micro-
mixing which takes very long time. Certainly, this long-lasting process takes place in
a material system, the physical properties of which already correspond to the homo-
geneous mixture:

W =f(u, to, @) and  p*=f(p1, P2, ¢) )

By the introduction of the intermediate quantities u* and p* the relevance list (5.3)
is reduced by three parameters:

{6; d; p*, u*; gAp, n} (5.6)
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Now, the mixing time characteristic consists of only three pi-numbers:
nb=f(Re*, Ar¥) (5.7)

(The pi-numbers Re* and Ar* have to be formed by p* and p*.)

In this pi-space, the process equation has been evaluated for the cross-beam stir-
rer, whereby the scale was altered by w= 1 : 2 and the process parameters were
widely varied [15]. The process equation found reads

VN =51.6 Re* ™ (Ar*'? +3) 10" < Re* < 10%; 10* < Ar* < 10" (5.8)

This means that the mixing time increases in this flow range by (Ap/p*)?/. An
increase of Ap/p* by a decade, e.g. from 107 to 10~ would lengthen the mixing
time by a factor of 4.6.

This example clearly shows the advantage of introducing intermediate quantities in
complicated problems. These findings will be also confirmed by the next example.

Example 7: Dissolved air flotation process

In a flotation process, tiny gas bubbles adhere to the naturally hydrophobic or artifi-
cially hydrophobised surface of solid particles making them float to the liquid sur-
face, from where they can be removed as foam. For the removal and concentration
of activated sludge in the biological waste water purification process, both dissolved
air and degasifying flotation [16] can be used. In both cases, a gas mixture (air or
CO, + Ny) is first dissolved in the respective liquid under higher pressure and is
released, after decompression, in the form of tiny gas bubbles. The devices for this
procedure consist of either longitudinally streamed through basins or of flotation
cells, Fig. 3 a. To enable a vertical flow through the flotation cell, the cell is spatially
separated into a flotation chamber and an annular space. In the latter, the liquid
flows slowly downwards and the residual flocks rise upwards. In this way a complete
removal of the particles is achieved.

Flotation is a depletion process which obeys a time law of the 1° order and is
described by the flotation rate constant, kg. The target quantity, “solids discharge A”,
corresponds to the chemical conversion, X, in 1" order reactions:

A=X=(cp—¢c)/co=1-c/co=1—exp (kg t) (5.9)

Now we will examine the flotation process taking place in the flotation cell (s. Fig. 3 a) of
a given geometry (characteristic linear measurement of length being the cell diame-
ter D).

The problem here consists in listing the material parameters because, in activated
sludge, they fluctuate strongly (much in contrast to ore flotation). Surely, the degree
of hydrophobicity (wettability) of the particle surface (contact angle, ®) will be of
importance. Furthermore, the pH value, the concentration of the flocculant (poly-
electrolyte), cg, the portion of solids, ¢, in the system, the weight difference, gAp,
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between the bacteria and the liquid — just to mention a few — will play an important
role.

In contrast, it is easy to list all of the process parameters involved: liquid input,
Qin, Which leaves the cell divided into the flotate discharge, qg, and the processed
liquid output, qqus releasable gas content of the liquid feed, qg.s/qin = Hy Ap/pc;
gravitational acceleration g. (Hy is the Henry’s law constant)

The relevance list now reads:

{A; D; ©, pH, ¢, @; Qin, Qaut 9c/Qin, SAP} (5.10)

This relevance list, which is certainly incomplete with respect to physical properties,
can be streamlined significantly by introducing two intermediate quantities:
1. the superficial velocity, v, in the annulus of the flotation cell (Fig. 3 a):

v=fi1 (Qin,D) and (5.11)
2. the rising velocity, w, of the flocks:

w=f, (0, pH, ¢g, @, 4c/qin, gAP) (5.12)

(The rising velocity of the flocks has to be determined with an appropriate measu-
ring device.)

The 10-parametric relevance list in eq. (5.10), which has been assumed to be fairly
complete, now reduces to only a 5-parametric one:

{A, v, W, qinr qout} (513)

This relevance list delivers the following simple 3-parametric pi-set:

{A, WV, Qin/Qoutt (5.14)

In this pi-space, measurements were evaluated which were performed in a bench-
scale flotation cell (Fig. 3 a) of D = 0.6 m. The flotation cell input consisted of biolog-
ically purified waste water, containing = 3 g TS/l activated sludge (TS - total solids),
which was processed in the 30 m high bubble columns, the so-called “Tower Bio-
logy” of BAYER AG/Leverkusen, Germany.

The result in Fig. 3 b cannot be called satisfying. This is certainly not surprising,
because the processed waste waters of this chemical giant originated from ca. 150
production sites and constantly changed their composition. Nevertheless, at least it
can be seen that the process parameters are correctly taken into account by the ratio
v/w. (The rising velocity, w, was varied each day to a small extent by the addition of
different amounts of polyelectrolitic flocculants.)

The results of this examination show that biologically purified waste water can be
completely freed from activated sludge under the precondition that the superficial
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velocity of the input amounted to the half value of the rising velocity of the flocks.
(The fact that A =100 % was never achieved is understandable, because in the deter-
mination of the solids content the dissolved inorganic salts were also measured,

which of course cannot be removed by flotation.)
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Fig.3b Correlation between the activated sludge discharge A
and the ratio v/w of the superficial velocity, v, to the rising velo-

city of flocks, w; from [16].
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6
Important Aspects Concerning the Scale-up

6.1
Scale-up Procedure at Unavailability of Model Material Systems

To be able to adjust the process point of the pertinent pi-space in the model experi-
ment, one has to chose an appropriate model material system.

In order to conduct model measurements in only one model device, the numeri-
cal values of the pi-numbers in question (i.e. the fixation of the operational process
point of the system) must be adjusted by the appropriate selection of the numerical
values of the process parameters and/or of the model material system. If this is not
feasible, then the process characteristic has to be evaluated from model experiments
in devices of different scales or the operational process point has to be extrapolated
from measurements in differently sized model devices.

When model material systems are not available (e.g. with non-Newtonian fluids)
or the relevant material parameters are unknown (e.g. with foams, slimes and slud-
ges), model measurements must be carried out in models of various sizes.

The unavailability of the model material systems can sometimes limit the applica-
tion of the dimensional analysis. In such cases it is, of course, absolutely wrong to
speak of “limits of the dimensional analysis”.

The following example will show how design and scale-up data can be obtained
by model measurements with the same material system in differently sized labora-
tory devices.

Example 8: Scale-up of mechanical foam breakers

In certain chemical and biological as well in some unit operations, foaming occurs
to such an extent that the process is severely impaired or even comes to a complete
standstill. For example, chemical reaction systems tend to foam if a gas is formed in
nascent state, because such minute gas bubbles do not coalesce to form larger ones
and therefore remain in the system. Expulsion of residual monomers after emulsion
polymerization often involves serious foaming problems because, in this case, very
fine gas bubbles are formed in a material system which contains emulsifiers, i.e.
foam producing surfactants.
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In microbiological processes, foaming occurs more often than in chemical ones
since many metabolic processes produce surfactants, the process frequently takes
place in a 3- or 4-phase systems (G/L/(S)/microorganisms) and intensive aeration or
gas evolution (fermentation processes) is often involved. This often leads to the situ-
ation that foam evolution cannot be controlled any more.

Finally, unit operations (gas absorption, distillation) may cause foaming or are
even based on foaming (flotation, foam fractionation).

Mechanical foam breaking is the method most frequently used to cope with these
problems. It is largely based on subjecting the foam lamellae to shear stress and to
rapidly alternating pressure fields generated within the foam breaker. In addition,
compressed secondary foam, which is ejected from the foam breaker, strikes against
primary foam in the gas head or against the vessel wall. The task of the foam brea-
ker is to compress the voluminous primary foam (d, > 1 mm) to an easy flowing
secondary foam (d,, > 0.05-0.1 mm). This can then be returned back into the gas
space of the vessel.

This aim fully describes the target quantity of a foam centrifuge, s. sketch in
Fig. 4. One has to determine the minimum rotational speed, n,;,, required to set
the foam flowing. (According to [17], a resulting foam density of ca. p = 0.50 kg/1
should suffice.)

The characteristic geometric parameter is undoubtedly the diameter, d, of the
foam centrifuge (here the diameter of the cone base).

Density, viscosity and elasticity of the foam lamellae, as essential physical properties of
the foam, cannot be measured. They all depend on the physical properties of the investi-
gated multiphase material system, including the type and concentration of surfactants.
These properties can usually not be measured, particularly not if they are produced in
situ by the bacterial culture. We will therefore introduce into the relevance list the sum
of all physical properties, S;, which affect the destructibility of the foam as well as the
concentration, ¢t (e.g. in [ppm]), of a known tenside used in the tests.

The process parameters are first represented by the minimum rotational speed,
Nmin (@S a target number), and then by the temporal foam evolution, qf which
equals the gas throughput: qf £ q. In the original publication [17], the acceleration
due to gravity, g, was not introduced into the relevance list on the grounds that it is
the centrifugal acceleration which causes foam breaking and this exeeds gravitatio-
nal acceleration by a multiple. This is indeed true, but it also has to be taken into
consideration that the state of the foam upon entry into the foam centrifuge very
much depends upon the force field in which it has been produced.

This reasoning leads to the following relevance list of the problem:

{Nmin; & S, ¢ @, g} (6.1)

and delivers the following pi-space:

Q' =f(Fr, Si*, cr) with (6.2)
3 2
4 n_.d
Q'= I“‘(Il‘ and FrE—d%g
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Q! represents the reciprocal value of the well known gas throughput number Q. Fr
is the Froude number, here formed with the gas throughput and cy is the dimen-
sionless concentration (in ppm) of the foaming agent in the liquid. S;* are the physi-
cal properties which affect foam stability. Because they are neither known by num-
ber (i) nor by kind, instead of S;* the type of the foaming agent (name and chemical
structure) must be given.

The model measurements [17] were performed on three geometrically similar
appliances in the scale-ratiow=1:1.5: 2. Fig. 4 shows the dependence, eq. (6.2), for
the foaming agent Mersolat®H (BAYER/Leverkusen, Germany). The process equa-
tion reads:

Q=137 Fro* g (6.3)
For the five foaming agents examined in [17] the following exponents in
Ql=F7?ch (6.4)

were found: a = 0.40-0.45 and b=0.1-0.36.
The correlation Q! o Fr™® can be reduced after remodeling and, with respect to
the exponent a, to the following dependences:

a=05: n’d/g=c} (6.5)
a=04:nd =¢*? g™ (6.6)

In the first case, eq. (6.5), the necessary centrifugal acceleration n’d only depends
on the foam parameters S;* and cr, these being independent of gas throughput
q A qr These foams can be easily controlled. (With the exception of Mersolat®H
(a = 0.40), the foaming agents investigated in [17] did not comply with this beha-
viour, here a = 0.45)

In the second case, eq. (6.6), which applies to Mersolat®H (Fig. 4), the tip speed,
n d, necessary to control the foam is, to a small degree, also dependent upon q.
Since the exponent, a, of Fr in the process equation (6.4) exhibits a numerical value
of a = 0.45 for four foaming agents and only a = 0.40 for Mersolat®H, see [17], the
numerical value of the constant at Fr = const can be plotted for all five foaming
agents as a function of the foaming agent concentration. In such a way the mechani-
cal stability of foams produced by individual surfactants can be quantified. (It is
shown in [17] that the effect of the type of foaming agent on the foam stability is
surprisingly low.)

In order to design and to scale-up a foam centrifuge of the type presented, measu-
rements with the material system in question would have to be performed on a
appropriate model appliance. In this manner, the design of the full-scale foam cen-
trifuge presents no problem. Apart from that, these tests and their representation in
the sense of Fig.4 give the manufacturers of foaming agents a quantifiable assess-
ment of the mechanical stability of the foams produced.
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2
l Mersolat® H
crin ppm
103 . dlmm]|50[100
1 n d3 [ ] 200 |of e
1 ="g" 300 o] a
] o 400 (O] =
5
2 S
Fr cy 08
102 . —
5 10-7 2 5 10-6 2 5 10-5

Fig. 4 Process characteristic of a foam centrifuge (sketch)
for a given foaming agent (Mersolat®H) in two concentrations
(e in ppm); from [17]

6.2
Scale-up Under Conditions of Partial Similarity

When appropriate material systems are not available for model experiments, accu-
rate simulation of the working conditions of an industrial plant on a laboratory- or
bench-scale may not be possible. Under such conditions, experiments on differently
sized equipment are customarily performed before extrapolation of the results to
the full-scale operation. Sometimes this expensive and basically unreliable proce-
dure can be replaced by a well-planned experimental strategy. Namely, the process
in question can be either divided up into parts which are then investigated separa-
tely (Example 9: Drag resistance of a ship’s hull after Froude) or certain similarity
criteria can be deliberately abandoned and then their effect on the entire process
checked (Example 41/2: Simultaneous mass and heat transfer in a catalytic fixed
bed reactor after Damkdohler).

Several “rules of thumb” for dimensioning different types of process equipment
are, in fact, scale-up rules based unknowingly on partial similarity. These rules
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include the so-called mixing power per unit volume, P/V, widely used for scaling up
mixing vessels, and the superficial gas velocity, v, which is normally used for scaling
up bubble columns and fluidized beds (Example 10).

Example 9:  Drag resistance of a ship’s hull

This problem represents the dawn of scale-up methodology and is closely linked to
the name of William Froude (1810 — 1879). We are very much indebted to this brilli-
ant researcher because he treated this significant scale-up problem with a clear phys-
ical concept and carefully executed experiments to go with it.

We shall first treat this problem by using dimensional analysis. The drag resi-
stance, F, of a ship’s hull of a given geometry (characteristic length being its length,
1, and a given displacement volume, V) depends on the speed of the ship, v, the
density, p, and kinematic viscosity, v, of the water and — because of the bow wave
formation — also on the acceleration due to gravity, g. The list of relevant quantities
is thus:

{F;LVip,v;v, g} (6.7)

The following — conveniently drawn up — dimensional matrix leads to, after only two
linear transformations, the unity matrix (rank r = 3) and the residual matrix:

p ) v F v g v

mass M 1 0 0 1 0 0

length L -3 1 1 1 2 1 3

time T 0 0 -1 -2 -1 -2 0
core matrix residual matrix

p ) v F v g v

M 1 0 0 1 0 0 0

3M+L+T 0 1 0 2 1 -1 3

-T 0 0 1 2 1 2 0
core matrix residual matrix

From this, after the well known procedure, the following four pi-numbers result:
I, =F/(p?v)=Ne (Newton number)
I,=v/lv=Re™" (Reynolds number)
I;=gl/v*=Fr' (Froude number)

I,=V/I> - dimensionless diplacement volume
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The problem is consequently completely defined by the pi-set
{Ne, Re, Fr, V/I’} (6.8)

The model theory requires that in the scale-up from model- to the full-scale not only
the geometric similarity (V/I> = idem) is maintained, but also that all the other pi-
numbers describing the problem keep the same numerical values (pi= idem). This
implies that, for example, in the measurements with the boat and ship models both
process numbers

Fr=v’/(lg) and Re=vl/v (6.9)

be idem. However, this demand cannot be fulfilled.

Because the acceleration due to gravity cannot be varied on Earth, Fr = idem is
adjusted in model experiments by the model speed vy;. Thereafter, Re = idem has to
be met by the adjustment of the model fluid viscosity. Supposing that the size of the
model is only 10 % of the full-scale size (scale-up factor p = Iy/Iyy = 10), then the
requirement Fr = idem results in the speed of the model vy; = 0.32 v From this, the
kinematic viscosity, vy, of the model fluid can be calculated:

Va/VT = (v/v) (Ing/I7) = 0.32 x 0.1 = 0.032 (6.10)

However, there is no fluid with a viscosity which is only 3 % of that of water. (At
=100 it follows vy/vy = 1 x 107, i.e. the viscosity of the model fluid may be only
1x 1072 of the water value.)

If the scale-up factor didn’t have to be that small and models were not so expen-
sive to build, experiments could be run with models of various sizes in water at the
same value of Fr and then the results could than be extrapolated to Ner at Rer. In
view of the powerful model reduction and the resulting extreme differences in the
Reynolds number

w=1;10;100 — Rey/Rer=1;32x107;1x10 (6.11)

extrapolation appears to be a risky undertaking, particularly when the cost of the
motor used in the full-scale application is considered.

Naturally, the results of dimensional analysis discussed above and their conse-
quences were not known to the ship builders of the 19th century. Since the time of
Rankine, the total drag resistance of a ship has been divided into three parts: the
surface friction, the stern vortex and the bow wave. However, the concept of Newto-
nian mechanical similarity, known at that time, only stated that for mechanically
similar processes the forces vary as F o p 1> v2. Scale-up was not considered for
assessing the effect of gravity.

Froude observed that the resistance due to the stern vortex was relatively small
compared to the other two sources of resistance. Therefore, he decided to combine it
with the bow wave resistance to obtain the form drag, Fr. As a result of careful inve-
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stigations and theoretical considerations, he realized that the wave formation of the
ship could be simulated by using scale models. He arrived at the law of appropriate
velocities: “The wave formations at the ship and the model are (geometrically) simi-
lar, if the velocities are in the ratio of the square root of the linear dimensions”. He
also found that for similar wave formations, the hull drag (friction drag F,) behaves
not as F, o< p v* 1%, but as F, e« v'¥%> A p (A - surface area). Consequently, he devel-
oped computational methods for scaling down models and ships by length and the
type of the wetted surface. In this way, he was in the position of being able to calcu-
late the form drag, Fy, from the total drag after subtracting the predictable friction
drag. He found: “If we adhere to the law of the appropriate velocities in scaling-up
the ship, the form resistances will correspond to the cubes of their dimensions (that
is to say, their displacement volumes)” [18]”
In summary:

1. Ftotal - Fr = Ff
2. Ifv? o 1, than Feec 1%, (6.12)

Dividing this functional dependence (6.12) by p 1* v2, in order to transform Fy into
the Newton number of form drag, leads to the following proportionality

Fe P _ 1
plPv:  plv: pé
This means:
Ner =idem at Fr=idem with Fr=v’/lg (6.13)

In order to verify these experimental results, the corvette “Greyhound” was towed by
the corvette “Active” under the command of Froude, and the drag force in the tow
rope was measured. Froude reported [19] that the observed deviations from the pre-
dictions of the model were in the range of only 7 — 10%.

M. Weber [20] pointed out that Froude’s procedure was not entirely correct and
could never provide real proof, because complete similarity between the model and
its full-scale counterpart cannot be achieved. The described procedure can therefore
represent nothing more than an excellent approximation of reality. He continued by
saying: “The fact that Froude was able to achieve his goal with such a large measure
of success, despite all the difficulties, lies in his ingenuity which enabled him to
itemize and to assess all the practical and theoretical details of drag resistance and
finally to trace a clear picture of this intricate phenomenon.” Nothing can be added
to this assessment: Froude‘s work represents a prime example of partial similarity.
His performance can certainly be admired, especially in view of the measuring tech-
niques available to him at that time.

*) The reference [18] includes the minutes of the session of The Institution of Naval Architects
in London of April 7, 1870. During this session, W. Froude presented and defended the
results of his modeling with great steadfastness and conviction; this represents the sidereal
hour of the theory of models.
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J. Pawlowski [21] discussed an interesting alternative experimental approach to this
scale-up problem. He also started by splitting the drag resistance into friction,
depending only on Re, and a bow wave resistance, depending only on Fr:

Ner =f; (Ret) + f> (Fry) (6.14)

However, he proposed a different strategy from that of Froude. In the first experi-
ment, measurements were made with the model ship in water at Fr; = Fry, conse-
quently Re; = Rer /2, i.e., the measurement was carried out at a correct Fr value
and a false Re value. As a result, also a false value of Ne; was obtained from the
relationship:

Ne; = f1 (Req) + f> (Fry)

Two additional experiments were carried out, not with the model ship, but with a
totally immersed form (Fig. 5) whose shape was given by reflecting the immersed
portion of a ship’s hull at the water line (at V/I* = idem). In these experiments, the
Froude number is irrelevant; the friction corresponding to the surface area of the
model must be divided by 2.

The measurements in water were carried out at Re; and Rer, thereby obtaining

Ne, =f1 (Rer) and Nes =f; (Rey)
The desired Net could then be calculated:
Ner = f1 (Rer) + f> (Frr) = Ne; — Nes + Ne,
The above alternatives for the determination of a ship’s hull resistance illustrate an

application of the method of partial similarity in which the process is divided into
parts, this allowing them to be investigated independently.

Fig. 5 Sketch of the completely submersed streamlined body
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Example 10: Rules of thumb for scaling up chemical reactors: Volume-related
mixing power and the superficial velocity as design criteria for mixing vessels and
bubble columns

In the introduction to this chapter it has been already pointed out that for the design
of chemical process equipment “rules of thumb” exist. Upon closer examination,
these rules provide conditions which unconsciously accept partial similarity. Actua-
1ly, one cannot expect that complicated processes of fluid dynamics occurring during
mass and heat transfer can be adequately described by criterions such as power per
unit of volume, P/V, for mixing vessels and superficial gas velocity, v = q/S, for bub-
ble columns.

Each unit operation in process engineering obeys specific laws which demand a
separate pi-space. It cannot be expected that different processes can be depicted by
the same pi-space.

Stirring vessels. Upon the examination of different stirring operations it was indeed
found that the intensively formulated process parameter P/V represented the perti-
nent scale-up criterion only if the stirring power has to be dissipated in the volume
as evenly as possible (micro-mixing, isotropic turbulence). Examples of this are the
dispersion of a gas in a liquid or the dispersion of immiscible liquids; s. [22].

In the most important stirring operation — the homogenization of liquid mixtures
— the convective transport of liquid balls (macro-mixing) is of predominant import-
ance. Thus, this process depends to a large degree on space geometry and type of
stirrer. It is influenced by the extensive parameters such as stirrer speed, n, and stir-
rer diameter, d. Here, the similarity with respect to fluid dynamics is given by Re =
n d” p/p=idem.

Convective bulk transport is also an extremely important factor in the suspension
of solids in a stirred tank (this is also responsible for the flow pattern at the tank
bottom). P/V cannot be used as a scale-up criterion in this process either. Measure-
ments have shown that the minimum rotational speed, n;;, of the stirrer which is
necessary for the suspension (whirling-up) of particles in the turbulent regime is
given by the appropriate Froude number:

Frcrit = n(Z:rit d p/(g Ap) (618)
Which consequences result from the “dimensioning criterion” P/V if the correct
scale-up criterion is represented by Fr = idem?

Because the Froude number is the scale-up criterion here, we formulate it for a
given material system by P/V as follows:

Fr o n?d = idem (6.19)

P/Ven®d® (Pocn’d®in the turbulent flow range; V o d°) (6.20)
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Fro n’ d = idem means that any power of Fr is equally idem:
Fr’/? = (n? d)** = (P/V) d"V/* = idem (6.21)

The answer to the question of the relationship between P/V and Fr, at Fr = idem,
reads:

[(P/V) dV

=[(P/V) ")
Fr=idem — (P/V)

=(P/V)mu'?  p=dydy (6.22)

It should be pointed out that the scale-up rule Fr = idem results in costly consequen-
ces: The power input per unit volume increases by the square root of the scale-up
factor p.

Bubble columns are often designed on the basis of the superficial gas velocity v = q/
S (q - gas throughput, S - cross-sectional area of the column). Many authors have
found that the gas/liquid mass transfer in bubble columns is indeed governed by
this quantity (kp - liquid side mass transfer coefficient; a - interfacial area per unit
volume):

kjae<v _, kia/v=const. (6.23)

This interdependence is only understandable when one considers that the volume-
related mass transfer coefficient is defined by kja = G/(VAc) and the superficial
velocity, v, by v = q/S, as well the fact that volume V = H x S (H - height of the
column):

ka G S

__ G _
V S A Cquchfcons’[.

In words: The gas absorption rate G[MT"'] is directly proportional to the liquid
height, H, the gas throughput, q, and the concentration difference, Ac [24]. (This is
only valid under the conditions that the gas is not completely absorbed: Ac > 0.)
In contrast with this — and in analogy to the corresponding findings in the mixing
vessel — the mixing (back-mixing) in bubble columns cannot be described by the
intensively formulated quantity v. For this scale-up task, the Froude number is com-
petent here.

Experiments [25] performed in bubble columns of different sizes gave the follo-
wing expression for the mixing time, 6:

0 (g/D)"/? oc FrV/* (6.25)

Fr=v? /D g; D - diameter of the bubble column
It follows that

0o v D" resp. 0=idem — v /> D**=idem
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This leads to the conclusion that
vr=vy u'? (6.26)

Thus, in a bubble column which has been geometrically scaled-up by a factor of
w= 10, the same mixing time as in the model will be only obtained when the super-
ficial velocity is increased by a factor of 10" = 32. Hence, v is not a scale-up criterion
here.

¢ The correlations presented in example 10 show emphatically that a particular
scale-up criterion, that is valid in a given type of apparatus for a particular
process, is not necessarily applicable to other processes occurring in the
same device.
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7
Preliminary Summary of the Scale-up Essentials

7.1
The Advantages of Using Dimensional Analysis

The advantages made available by correct and timely use of dimensional analysis are
as follows:

1. Reduction of the number of parameters necessary to define the problem. The
pi-theorem states that a physical relationship between n physical quantities
can be reduced to a relationship between m = n — r mutually independent pi-
numbers. Herein, r represents the rank of the dimensional matrix which is
formed by the physical quantities in question and corresponds, in most
cases, to the number of base dimensions contained in their dimensions.

2. Reliable scaling-up of the desired operating conditions from the model to the
full-scale plant. This is based on the scale invariance of the pi-space. Accor-
ding to the model theory, two processes may be considered to be similar if
they take place under geometrically similar conditions and all dimensionless
numbers which describe the process have the same numerical value.

3. A deeper insight into the physical nature of the process. By representing
experimental data in a dimensionless form, physical states (e.g. turbulent or
laminar flow range, suspension state, heat transfer by natural or by forced
convection, and so on) can be delimited from each other and the limits quan-
tified. In this manner, the domain of individual physical quantities also beco-
mes apparent.

4. A greater flexibility in the choice of parameters and their reliable extrapola-
tion within the range covered by the dimensionless numbers. These advanta-
ges become clear if one considers the well-known Reynolds number, Re = v
p/u, which can be varied by altering the characteristic velocity, v, characteri-
stic length, 1, or the kinematic viscosity, v = u/p. By choosing appropriate
model fluids, viscosity can be very easily altered by several orders of magni-
tude. Once the effect of the Reynolds number is known, extrapolation of both
v and 1 is permitted within the examined range of Re.
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7.2
Scope of Applicability of Dimensional Analysis

In order to describe a physico-technological problem by a complete set of pi-num-
bers, initially all essential (“relevant’) physical quantities which describe the prob-
lem must be known. A prerequisite of this requirement is a thorough and critical
knowledge of the process in question.

In fact, the applicability of dimensional analysis depends heavily on the know-
ledge available. The following five steps can be outlined, see also Fig. 6.

Knowledge
available

Basic physics of
the process

Relevance list

Mathematical
formulation

Mathematical
solution

¥

super-
V fluous

reduction of
Y |pi-set possible

Application
} without difficulty

pi-set unreliable

Application impossible

Fig. 6 Applicability of dimensional analysis, as dependent on
the knowledge available; after J. Pawlowski [26]

In words:
1. The physics of the basic phenomenon is unknown.
Result: Dimensional analysis cannot be applied.
2. Enough is known about the physics of the basic phenomenon to compile a
first, tentative relevance list.
Result The resultant pi set is unreliable.”

D It must, of course, be said that approaching a problem from the point of view of dimensional
analysis also remains useful even if all the variables relevant to the problem are not yet
known: The timely application of dimensional analysis may often lead to the discovery of
forgotten variables or the exclusion of artefacts.
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3. All the relevant physical variables describing the problem are known.
Result: The application of dimensional analysis is unproblematic.
4. The problem can be expressed in terms of a mathematical equation.
Result: A closer insight into the pi relationship is feasible and may facilitate a
reduction of the set of dimensionless numbers.*
5. A mathematical solution of the problem exists.
Result: The application of dimensional analysis is superfluous.

7.3
Experimental Techniques for Scale-up

In the Introduction, a number of questions were posed which are often asked in
connection with model experiments. We are now in position to answer them.

e How small can a model be? The size of a model depends on the scale factor
u = ly/ly and on the experimental precision of measurement. Where p = 10,
a + 10 % margin of error may already be excessive. A larger scale for the
model will therefore have to be chosen to reduce the scale-up factor .

o Is one model scale sufficient or should tests be carried out with models of different
sizes? One model scale is sufficient if the relevant numerical values of the
dimensionless numbers necessary to describe the problem (the so-called
“process point” in the pi-space describing the operational condition of the
technical plant) can be adjusted by choosing the appropriate process parame-
ters or physical properties of the model material system. If this is not possi-
ble, the process characteristics must be determined in models of different
sizes, or the process point must be extrapolated from experiments in techni-
cal plants of different sizes.

o When must model experiments be carried out exclusively with the original material
system? When the material model system is unavailable (e.g., in the case of
non-Newtonian fluids) or when the relevant physical properties are unknown
(e.g., foams, sludges, slimes) the model experiments must be carried out
with the original material system. In this case measurements must be perfor-
med in models of various sizes (cf. Example 8).

The unavailability of the model material systems can sometimes limit the applica-
tion of dimensional analysis. In such cases it is of course absolutely wrong to speak
of “limits of the dimensional analysis”.

2) In principle, in constructing a relevance list, one should take into consideration all the availa-
ble information to possibly reduce it. In this context, reference is made to Example 33
(Description of particle separation by inertial forces after Biirkholz) and to Example 41/2
(Catalytic gas reactions in fixed beds after Damkéhler)
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8
Treatment of Variable Physical Properties by Dimensional
Analysis

When using dimensional analysis to tackle engineering problems, it is generally
assumed that the physical properties of the material system remain unaltered in the
course of the process. Relationships such as the “heat transfer characteristic” of a
wire in an air stream (Example 2) or of a mixing vessel

Nu=f(Re, Pr)

are valid for any material system with Newtonian viscosity and for any constant pro-
cess temperature, i.e. for constant physical properties.

However, constancy of physical properties cannot be assumed in every physical
process. A temperature field may well generate a viscosity field or even a density field
in the material system treated. In non-Newtonian (pseudoplastic or viscoelastic) lig-
uids, a shear rate can also produce a viscosity field.

Although most physical properties (e.g., viscosity, density, heat conductivity and
capacity, surface tension) must be regarded as variable, it is particularly the value of
viscosity that can be varied by many orders of magnitude under certain process con-
ditions. Besides this, it shows the highest temperature coefficients. In the following,
dimensional analysis will be preferentially applied to describe the variability of this
one physical property. However, the same approach can be adapted for any other
physical property.

The well-disposed reader will be surprised that this topic is given so much space
in this book. An explanation is easy to give: A complete similarity requires a geomet-
rical, material and process-related similarity, but the material similarity often cannot
Dbe easily obtained.

A problem arises, e.g., when model (laboratory, bench-scale) measurements are to
be performed in a so-called “cold model”, but the industrial plant operates at high
temperatures (petrochemicals; T = 800 — 1000 °C). How can we ascertain that the
laboratory model system behaves hydrodynamically similarly to that in the indust-
rial plant? Here, different temperature dependence of physical properties (viscosity,
density) may cause problems.

A problem also arises when laboratory measurements are to be performed with
cheap and easy to handle model fluids in order to gain information about the sca-
ling-up of an apparatus for treatment of cell cultures in biotechnology (mammal
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and plant cells, aerobic cultures, yeasts), the rheological behavior of which is very
complex (non-Newtonian: pseudoplastic and viscoelastic). Which model system may
we choose?

The answer is clear and unambiguous: We may choose any model material
system whose dimensionless material function in question is similar to that of the orig-
inal material system. In this chapter the necessary procedures to obtain this infor-
mation will be shown.

8.1
Dimensionless Representation of the Material Function

The variability of physical properties widens both the dimensional x- and the dimen-
sionless pi-space. The process is not determined by the original material quantity x,
but by its dimensionless reproduction. (Pawlowski [27] has clearly demonstrated this
situation by the mathematical formulation of the steady-state heat transfer in an
concentric cylinder viscometer exhibiting Couette flow). It is therefore important to
carry out the dimensional-analytical reproduction of the material function uniformly
in order to discover possibly existing, but under circumstances concealed, similarity
in the behavior of different substances. This can be achieved only by the standard
representation of the material function [5, 27].

e In the dimensional-analytical formulation of processes whose course
depends on variable material properties, it is the dimensionless representa-
tion of the material function which counts.

e Analogous processes, in which the material properties vary in a different
manner, can be described by the same process equation, only if the corre-
sponding material functions can be represented by the same dimensionless
material function. This point is particularly important for the selection of
substances for model measurements.

Any material function s(p) — e.g. u(I) — can be converted in its standard representa-
tion w = F(u) by standardization using two dimensional parameters a and b:

P_PO

u= a

=S
, W=gp (8.1)
Their meaning is:

S
a=—-2—— and  b=s,=s5(po) (8.2)
(ds7dp),
A standard representation of any material function s(p) with the reference point po

is therefore given as

D) =_1 s{po+u:,((i°))} (8.3)
0
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This fulfils the standardization requirements

D(u),_, = (%’)uzo =1 (8.4)

Example 11: Standard representation of the temperature dependence of viscosity

The temperature dependence of the viscosity p(T) is expressed by the temperature
coefficient y, of viscosity:

9
Y, = (& a—*zﬁ)r <0 (8.5)
0

The standard representation of u(T) is gained by transforming the function u(7) into
a function w/ue = P[yo(T-To)] and subsequently representing it graphically. The
transformation parameters a and b, read here

a=yo ' and b=w(To) = o (8.6)
Consequently, w and u have here the following meaning

M and u="o (T- To) (8.7)

In Fig. 7 the dependence p(T) is shown for 16 different liquids with extremely diffe-
rent Y, values. At room temperature they display u values which cover five decades.

102 + ‘ ’ '
Legend
o |6 \ 1-BaysilonM 1.000 9 - Olive oil
© 1 2 - Baysilon M 10.000 10 - 25 % Perbunan in benzene a
n._'.. 3 - Baysilon M 100.000 11 - Mercury
= 4 - Baysilon - resin 12 - Rapeseed oil
5 - Molten lead 13 - Castor oil
100 T 6 - Glycerol 14 - Turpentine oil B
7 - 25 % Levapren in benzene 15 - Water
8 - Methanol 16 - Molten zink
101
102 +
2l = I —_—
10 \@\\1 4 T 16
8
15
104 L

o 100 200 300 400 500 600 ! [°C] o0
Fig. 7 Dependence u(T) for 16 different liquids; from [27]
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Fig. 8 a shows these data in the framework w/uo = f [Yo (T — To)]- The reference tem-
perature chosen is indicated by e. The solid curve a represents the so-called “refer-
ence-invariant approximation” of this function:

wko = @fyo (T - To)] (8.8)

We will refer to this correlation later on.
The dotted curve corresponds to the representation preferred by engineers

w/uo = exp [Yo (T = To)] (8.9)

As can be seen from Fig. 8a, the experimental data under consideration cannot be
approximated very well by this function. Nevertheless, it does seem to be suitable
for smaller voAT intervals.

For the description of the material function w(T), the so-called Arrhenius relation-
ship can also be used

W= atm),, = G, @10

0
by which the temperature dependence of viscosity is expressed as

R

W, = @, {RE—TOO(TO/T = 1)] = @, [Arr (Ty/T - 1) (811)

(In this way Svante Arrhenius (1889) described the temperature dependence of the
reaction rate constant k: k(T) = k.. exp (E/RT).)

In this case it delivers an even better an approximation than the representation in
Fig. 8 a (see Fig. 8 b). From

Arr=E/RT and u=y, (T - To) (8.12)
it follows that between the Arrhenius number Arr and vy, T the relationship exists:
Arr=E/RT=—v,T (8.13)

In addition, it should be pointed out that for a dimensionless representation of the
dependence w(T) two methods can be used. Only the first possibility has been dis-
cussed so far. It consisted of the choice of two additional quantities (transformation
parameters) with the dimensions of u and T, these already being contained in the
material function. In the case treated above, this has been accomplished by the
introduction of g and vy, or E/R respectively. Pawlowski [S, 27] terms this representa-
tion a genuine one. Due to the fact that its definition is already contained in the
material function, it has a higher significance in the dimensionally analytical treat-
ment of a process.
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Fig. 8 b Standard representation of the
temperature dependence of viscosity in the
form of the relationship

w/o =Py [g (To/T-1)]

For further expolanations see Fig. 8 a.

Fig.8a Standard representation of the tem-
perature dependence of viscosity in the form of
the relationship w/uo =f[Yo (T — To)]. The solid
curve a represents the reference-invariant
approximation by the x-function (see section
8.2), whereas the dotted line corresponds to the
engineering representation, eq. (8.9); from [27].

In contrast to this approach, the parameters with the dimensions of pu and T,
these being necessary for the dimensionless representation of the process, can also
be formed by the parameters influencing the process in question. In this case, one
can speak of the process-related representation of the material function.

Example 12: Standard representation of the temperature dependence of the density

The temperature dependence of density p(T) is expressed in an analogous manner
by the temperature coefficient of density:

— (190
b= (b 37,
0
The standard representation of the material function p(T) is analogous to w(T). The
transformation parameters are

(8.14)

a=Po" and b=p(Ty) = po (8.15)

Consequently, w and u have here the following meaning:
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w=p/poand u= o (T- T (8.16)

The standard representation reads

p/Po=1[Bo (T~ To)] (8.17)

Fig. 9 a shows the p(T) dependence for four liquids. It can be seen that §, values are
two decades lower than in the case of vy,.

Fig. 9 b shows the standard representation of the above relationship. p(T) curves
for propene, toluene and CCl, coincide. The similarity of the respective p(T) curves
is clearly shown — this was also intended by this representation. These three fluids
can therefore be used as mutual model fluids within the whole measured T range.
For water this is not the case. The expected correlation performed by the transforma-
tion parameters a and b is achieved only in the region close to the “standardization
range” (at u= o(T - Top) = 0).
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Fig. 9 (a) p(T) dependence for four liquids and (b) their standard representation
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At this point the remarks given in the introduction to this chapter should be recal-
led: Water is of no use to investigate the performance of a petrochemical plant in a
“cold model”.

8.2
Reference-invariant Representation of a Material Function

In general, standard representation depends upon the choice of the reference point.
The question is posed: Do mathematical functions exist whose standard representa-
tions do not depend on the choice of the reference point and therefore could be
named “reference-invariant functions”? In case of an affirmative answer on the one
hand the reference point py — here T, — could be omitted (constriction of the pi-
space by one pi-number) and on the other hand the dimensionless representation of
the material function would stretch over the entire recorded range.

It is mathematically proven that only one class of reference-invariant standard
representations exists and that this can be represented by one-parametric x (u, )
functions:

w=y(wyP)=1+ypu)y’v  for p=0
w=7 (u, ) =exp (u) for =0 (8.18)

1 is a numerical value which can be determined numerically or graphically.
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Fig. 10 Ranges of existence and appearance of reference-invariant functions y, (u, V) [27]
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Fig. 11 Standard representation of the temperature depen-
dence of viscosity of aqueous sugar solutions of different
concentrations as well as their reference-invariant approxima-
tion using ¢ =-0.500 (solid curve). For key parameters a(x)
und b(x) see the auxiliary diagram; from [27].

The regions of existence and appearance of reference-invariant functions y, (u, )
are represented in Fig. 10. Curves with maxima and minima cannot be described in
a reference-invariant manner. In this case, both the dimensional-analytical represen-
tation and the model material system are confined to the region close to the “stan-
dardization range”.

The reference-invariant representations of the temperature dependence of viscosi-
ty in Fig. 8 a and b were obtained by 1 =-0.179 and —0.106 respectively.

For the determination of 1, two procedures are discussed in [27]: The 3-point
approximation (N = 3) and the approximation with the smallest relative standard
deviation (N > 3).

Example 13: Reference-invariant representation of the material function w(T, x)

Fig. 11 shows the reference-invariant representation of the temperature dependence
of viscosity of aqueous sugar solutions of different concentration (x — mass portion
of cane sugar). To obtain this correlation, u and (T — Ty) had to be transformed by
the transformation or key parameters a=1/y, [K] and b [Pa's] as w=pu/b and u= (T -
To)/a, whereby a and b are functions of x, see auxiliary diagram in Fig. 11. The refer-
ence temperature is To = 20 °C.

Example 14: Reference-invariant representation of the material function D(T, F)
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Fig.12 Comparison of the measured course of drying (—e—)
with the calculated one assuming constant diffusion coefficients
(108 D=0.5-10); from [28]
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0 Fig.13 The interrelation D(F) for polyamide at
0 50 Flgkgl 100 three temperatures; from [28]

This example deals with the dependence of the diffusion coefficient, D, of water in
polyamide (synthetic fiber Perlon®) on temperature and degree of moisture F
[g water/kg polyamide]. The knowledge of the correlation D(T, F) is indispensable
for the prediction of the course of drying shredded polyamide. This is convincingly
shown in Fig. 12, in which the relative degree of moisture, F/F,, in the course of
drying an infinitely expanded sheet of polyamide with a thickness of 0.9 mm is cal-
culated for different constant diffusion coefficients (10® D = 0.5 — 10). Only when
the dependence D(T) is taken into account (solid line), does the calculation of the
drying progress correspond to the measured data (— ¢ —). Fig 13 shows D(T, F) for
the material system polyamide/water.

In Fig. 14 the standard representation w = ® (u) of the connection in Fig. 13 is
given. The solid curve in Fig. 14 shows die invariant approximation of this correla-
tion with 1 = 0.61. The correlations necessary to produce the standard representa-
tion between both key parameters a and b are represented in Fig. 15.
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If the scale-up is performed in the pi-space with constant physical properties, the requi-
rement “iden?’ concerns all pi-numbers involved, whereby the dimensional quantities
contained in them can be deliberately varied. The dimensional-analytical validity range
includes all physically convenient numerical values of these dimensional quantities.

If the scale-up is performed in the pi-space with variable physical properties, the
requirement “idem” also concerns the form of the dimensionless formulated mate-
rial function. This aspect can make the choice of the model material system conside-
rably more difficult. This requirement is fulfilled, a priori, only if the interesting
range Au in the standard representation w = @ (u) lies close to the standardization
point, see the explanation concerning Fig. 9 b in the text.

With variable physical properties the relevance list widens by both key or trans-
formation parameters a and b as well as by the reference point. In the dependence
w(T) this includes the quantities

a=1/yo;b=uo;po=To

The original relevance list now contains two additional quantities, yo and Ty. Fur-
thermore, po has to replace u. By this it follows that the 3-parametric pi-space
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{Nu, Re, Pr} (8.19)

is transferred to the following 5-parametric one:
{Nu, Reg, Pro, YoTo, AT/ To} (8.20)

If one takes into consideration that the standard representation of w(T) is reference-
invariant, see Fig. 8aand 8 b

w/to = @(voAT) (8.21)
then the reference point Ty is cancelled and the correlation (8.20) is reduced to

Nu=f{Reo, Pro, YoAT} (8.22)
whereby Rej and Pr, are formed by .

Example 15: Consideration of the dependence u(T) using the p,,/p term

In the treatment of heat transfer problems in the engineering literature, the process
equation is, as a rule, extended by the parameter u/u, instead of yoAT. This is justi-
fied because between both terms, in accordance with the standard representation in
Fig. 8a, a simple correlation exists:

W/to =@ (YoAT) or u/uo=exp (YoAT) (8.23)

Both terms are equivalent to each other.

In heat transfer problems, the liquid bulk temperature is normally taken as the
reference temperature T, whereas the temperature of the heat transfer surface
(wall) Ty, is taken to describe the effective temperature difference, AT, in the process.
Therefore, the viscosity of the bulk liquid is taken as the reference viscosity: o = .

The inclusion of the viscosity number, Vis = iy /U, in the process equation for heat
transfer in pipes goes back to Sieder and Tate [29]. These researchers succeded to
correlate experimental data obtained in pipe flow with the term (jiy,/p) "', In this
manner, the differences between the cooling and heating process were considered,
these manifesting themselves by the differences in the thickness of the boundary
layers. In heating, practically no boundary layer is present as compared to cooling.

The heat transfer characteristics read:

Laminar range” (Re <2 320):
Nu (/W) *'* = 1.86 (Re Prd/1)'”> Re Prd/l1=10"'-10* (8.24)

) In this flow range the inlet effects make themselves felt until d/I ~ 200 (pipe diameter d, pipe
length 1)
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Transition range (Re =2 320-1 x 10%):
NU (/W) ** = 0.12 (Re?/*-125) Pr'/? (8.25)

Turbulent range (Re > 1 x 10%):
NU (/W) = 0.1 Re?? Pr'/3 (8.26)

However, the power —0.14 of the Vis term in heat transfer process characteristics
has not been confirmed by later researchers.

Hruby [30] found in cooling measurements with a Newtonian oil that the power
m of the Vis term depends on its numerical value:

m=-0.215 Vig %8 0.32 < Vis < 320

For Vis = 3 it then follows that m=—0.20, for Vis = 200 in contrast m=-0.14.
Hauckl [31] found insignificantly lower values:

m=-0.265 Vis™** 80 < Vis < 900

For Vis = 80 it is found that m=—0.14, for Vis = 900 in contrast m= —0.10.

These facts were examined in a later work [32], where two viscous mineral oils (Vis =
1-10* were used in cooling. It was found that power m attained for Vis = 1 — 100 was
larger and for Vis = 10>-10* was lower than —0.14. A comparison of these findings is
given graphically in Fig. 16.

For Pawlowski [27] a factorial inclusion of the Vis term into the heat transfer cha-
racteristic would make sense only if the temperature field is essentially restricted to

0.20

l 1
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0.18 2 {30]
3 [31]
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100 10! 107 10° uw/u 104

Fig. 16 Comparison of the findings m(Vis) of different authors
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the wall boundary layer, whereas the core flow would remain practically isothermal.
This is certainly the case in the pipe flow at Re > 2.300.

According to this expectation, in stirring vessels equipped with close clearance
anchor stirrers, the effect of the Vis term should not be observed. Zlokarnik [33]
examined the heat transfer at cooling and heating in a stirring vessel equipped with
a close clearance anchor stirrer. The eight liquids used displayed viscosities between
1 and 10°> mPa's at 20 °C and had extremely different temperature coefficients: v, =
(1.5-11.2) x 107 K", It was found that the data for cooling could be correlated only
insignificantly by Vis %% and for heating by Vis®%”>.

In contrast, Dunlap and Rushton [34] succeeded to correlate their measurements
at cooling and heating in a vessel with a turbine stirrer and pipe bundle heat exchan-
gers with Vis™* because a thick boundary layer developed around the tubes.

Example 16: Consideration of the dependence p(T) by the Grashof number Gr

In contrast to u(T), the relevance of p(T) is considered in the engineering literature
exclusively by the number BAT. The ratio p/po is used in heterogeneous material
systems (solids/liquid or solids/gas) in which the density differences Ap are occur-
ring independently of the temperature differences.

Due to the fact that density differences can only have an effect when associated
with acceleration due to gravity, both AT and p/p, are consistently combined with
the Galileo number Ga = Re’/Fr = g I’/v>. Therefore, in the heat transfer under
natural convection the

Grashof number Gr = PAT Ga = gBATI*/v? (8:27)
plays a role, whereas in processes where buoyancy or sedimentation occurs, the
Archimedes number Ar = (Ap/p) Ga = gAp I*/(p v?) (8.28)

is added to the pi-space.

Examples of the application of the Grashof number in heat transfer problems can
be found, for example, in [14]. For examples where the Archimedes number is
applied in solid/liquid systems (suspensions) see [22] and for sedimentation as well
as fluidization examples please refer to textbooks dealing with unit operations in
chemical process engineering.
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8.4
Execution of Model Experiments with Newtonian Fluids
Exhibiting Temperature Dependent Viscosity

8.4.1
Pi-space and Requirements Concerning the Model Material System

We will start by discussing a pi-space in which an optional process in an apparatus
of a given geometry takes place and where the hydrodynamics is coupled with a
steady-state heat transfer [35]. The target pi-number will be laid down later on
(Example 17). In case temperature independent materials take part, the process will be
described by the following possible process-related and material pi-numbers:

2
vlp C .u 2 v
0 P00 Vv 0

{ W * k, 7 1lg’ kAT (8.29)

Re Pr Fr Br

The Brinkman number, Br, is only relevant if the transformation of the mechanical
energy into heat is important. All material properties are related to the characteristic
temperature Tp.

If the problem is restricted to the creeping flow, the mass inertia (p) will not play a
role. In this case, p must be combined with the quantities C,, and g to give pCp
and pg. Consequently, the above pi-framework is reduced by one pi-number:

{Vl(p C)pﬁ ML Vzuo} (8-30)

k, ’ @’ k,AT

RePr Fr/Re Br

However, if viscosity is temperature dependent, this has to be taken into account by an
appropriate enlargement of the pi-space:

v1(p C) 2
{71"’ YW YW AT (8.31)

[(]
K Ppg KAT T,

Arr is the Arrhenius number at Tj; see (8.13).

By the combining the three process numbers with AT/ T, a new pi-number is for-
med which, apart from reference temperature and acceleration due to gravity, only
contains material properties:

2
Br AT/T Br AT/T k, g\ /3
B= TAT/T, _ BrATT, 1 (Po2) (832)

= =T 2 4
(Re Pr)4/3(Fr/Re (Re Flr)z/3 P1r4/3 g Py Cp,o

)2/3 = )

B becomes, at constant g, a pure material number which combines all the relevant
material properties at the reference temperature Ty. B = idem will therefore define
all the appropriate relevant model material properties.

If B is introduced into the pi-space (8.31), one optional process pi-number — e.g.
Fr/Re — must be deleted. The advantage of the new pi-space
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{RePr, By, B, AT/ T, Arro} (8.33)

is that one of the three process numbers is replaced by a material number and, con-
sequently, for the determination of the model fluid, as a maximum requirement,
(Arrg, B, @) = idem is valid. In this case, the requirement ® = idem must be consi-
dered at only higher u values (u= yoAT), i.e. far beyond the limits of the standardiza-
tion range; see p. 52.

If the material function u(T) can be represented in a reference-invariant manner,
then the reference temperature T is cancelled and the pi-numbers AT/Ty and Arr,
= E/RT, are combined to give

Arro/(AT|To) = E/R AT = —yoAT (8.34)

see (8.13). The pi-framework is thereby reduced by one pi-number.

In this case, a pure material number can be formed instead of B, eq. (8.32), in
which the temperature T, does not appear. Then —y, Ty is replaced by —yoAT whe-
reby AT represents the difference between two process-related temperatures (as in
the Brinkman number):

2. 1/3
_ Br(—yAT) _ ukg
B, =——5543="Y 2 (8.35)
(ReFr)ZBPr“/3 (p C )
The resulting pi-set
{RePr, By, By, —YoAT} (8.36)

now consists of two process numbers (RePr and Br) and of two pure material num-
bers (B; and —yoAT).

This pi-set is valid for any process involving creeping flow in which the conver-
sion of the mechanical energy into heat is important (Br is relevant) and the mate-
rial function p(T) can be represented in a reference-invariant manner.

8.4.2
Material Data Chart

In scaling up a process from the laboratory to the full-scale version, besides the geo-
metrical similarity, process-related and material similarity must also be considered.
In examining the demand for material similarity, it is expedient for the determina-
tion of model substances to start from a material data chart {T' = By x Pr'/?, Pr}
with a parametrical temperature indication, see Fig 17. From this representation it
can be discerned that mixtures of different materials are particularly suitable as
model substances because they cover entire areas in this diagram and can therefore
considerably widen the scope of material numbers.
The use of this material data chart will be explained by the Example 17.
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100 101 102 103 104

Pr

Fig. 17 A material data chart for the evaluation of the appropriate model fluid and the assigned
temperature To. Straight line (a) with I'* =T x Pr'/? = idem at creeping flow.

1 water 2 turpentine oil 3 engine oil Shell Thermia 11 4 Thermia 45

5 Baysilon M 10 6 Baysilon M 1000 7 glycerin 97 % 8 heavy machine oil
Hatched area: mixtures of different Baysilon oils

(Baysilon are silicone oils from Bayer AG, D — Leverkusen).

Example 17: Dimensioning of a wiped film heat exchanger [27]

With the help of model experiments, a wiped film heat exchanger, needed in a con-
tinuous production process to heat up a very viscous throughput, q, exhibiting New-
tonian viscosity behavior, should be designed.

Process parameters of the technical plant required

Diameter of the apparatus dr
Rotor speed n
Power P

Process conditions:

Input temperature T =102 °C
Output temperature Toww =112°C
Wall temperature Ty =118°C

Throughput q =81/min=1.33 x 10™* m’/s
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Physical properties of the input at Ty =110°C:
Viscosity u =0.84 Pa's
Temperature coefficient Yo =-0.083 K
Density p =897 kg/m’
Specific heat G =1570J/(kg K)
heat conductivity k =0.29 W/(m K)
Diameter of the model apparatus dy =0.05m
The relevance list of the problem reads:
{d: n, P: (L g) Tiny Toutr Tw: M: YO’ Py pr k} (837)

The numerical values of the physical properties are valid for the mean process tem-
perature which is defined by Tp = (Tin, + Ty ) /2.

In association with four base dimensions contained in their dimensions, these 13
x-quantities yield the following 13 — 4 = 9 pi-numbers:

Re,=nd”p/u Reg=qp/(du) Fr=n’d/g Pr=C,u/k

Br=(=yo)n’d*wk  Ne=P/(pn’d’)

ein = YO (Tln - Tw) 6out = YO (Tout - Tw) e0 = YO (TO - Tw) (838)
If we assume that the material function can be approximated in a reference-invariant
manner, then T is irrelevant and the pi-number 0, is cancelled. The pi-set contains
now eight pi-numbers.

The further discussion is made essentially easier by remodeling the above pi-
numbers in such a way that each pi-number contains only one process parameter:

Ma=(Rey’/F)'” = d{g(p/w’}'”

I = Reg (Re,”/F)'> = q{g(p/w)°}'""

I1, = (Fr*/Re,)'?

n {g” (w/p)}'?
Mp=Ne (Re,’ F)'? = P{g™" (p*/0))}' (8.39)

Besides this — similar to the procedure in section 8.4.1 — one pure material number,

T, is formed:

ro BERAD gy
=—39 =y (5t

(ReFr)z/3 Pr5/3 °

(8.40)
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The pi-set of eight remodeled pi-numbers now reads:
{4, Mg, Iy, Hp, Bin, Ooue, T, Pr} (8.41)
In this pi-space the following pi-equations can be represented as:
Oour= f (Mg, Ty, Ty, 04, T, Pr) and (8.42)
My = f(Ig, T, T, 65, T, Pr) (8.43)
At this point, similar to section 8.4.1, we make the restriction that the state of flow
in the process under examination is a creeping one. From this it follows that density

can only appear as a product in pC,, and pg. The Prandtl number is not an indepen-
dent parameter any more and must be combined by the appropriate pi-numbers:

Mg*=T4Pr'? = d 81/3 {(Gp pZ/(k M)}m

M* =T, Pr*” = qg!” (G p’/(k* w}'V?

ME=TL PP = ng? {C,p/(kp))?

Mp*=TIp P = Pg g™ () p*/(k* w)}'V?

M =TPr® = —y{ukg/(p’ G} =B, (644

The pi-set (8.41) is therefore reduced to seven pi-numbers:
{TIg*, TIg*, TLy*, TIp*, 04 ,00ut , T} (8.45)
and both process equations in examination read

Oout = (g% TIg%, T1,%,05, T) and (8.46)

IIp* SIgx, TIg%, T1,%, 05, T'%) (8.47)
Of six pi-numbers in eq. (8.46) four are already known. Oy, gy, I1g* and I'* are
fixed by the process conditions of the full-scale plant and the material properties of
the throughput. Therefore, only the functional interdependence

F([g¥, TI,%) = 0 (8.48)
must be found which consequently gives the dependence f (d, n). Therefore, the

dimensioning problem is not unambiguously fixed. It exhibits one degree of free-
dom and thus permits an optimization with respect to the power consumption.
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Conception of Model Experiments
In the conception of model experiments we first regard a general flow state and will
only later presuppose the creeping flow.

Pi-numbers which describe the general flow state (8.41) can be split into three
groups:

a) pi-numbers which are known by the full-scale plant: I1g, 0, Oy, I', Pr;

b) pi-numbers which can be adjusted by the choice of the model fluid: I1y;

¢) pi-numbers whose numerical values will be provided by the model experi-

ment: I1,,, ITp.

In the conception of model experiments the goal is to fix the model substance
and the test conditions in such a way that a complete similarity is achieved between
the processes in the full-scale plant (1) and in the model (). In this case, all pi-num-
bers fulfil the requirement idem. In the discussed case the procedure is as follows:

a) T =idem Pr=idem

b) Ilg=idem
¢) By,=idem 0oyt = idem Iy =idem
d) Mp=idem  IIp=idem (8.49)

The requirements (8.49 a) are of prime importance, because they must be fulfilled
in the search for a appropriate model fluid and the accompanying reference temper-
ature (To)m. Here, the material data chart (section 8.4.2) will help. Its use is descri-
bed in the following:

Point T in Fig. 17 corresponds to the values of I and Pr which result from the
material values listed. According to the idem conditions (8.49 a), the identity line of
the model fluid must pass this point, whereby the associated T value delivers the
reference temperature (To)y. In our example, the Baysilon mixture (76 % M10 +
24 % M1000) at 25 °C fulfils this requirement.

After the model fluid has been found, the model temperature, Ty, and the phys-
ical properties of the model system assigned to it are fixed. With the given dimen-
sion, dy;, of the model apparatus, I14 also is fixed. The condition Il = idem (8.49 b)
also stipulates the size of the full-scale heat exchanger, dy, before the model experi-
ments have been performed:

dr = dy [(P/Ww/ (P/W) 1) (8.50)

Due to the previously mentioned degree of freedom (8.48), a variety of alternatives
with respect to {dy, nt, Pt} can be established according to the model fluids used.
All of them fulfil the requirements set above.

The idem conditions of the pi-numbers (8.49 c), whose numerical values are fixed
by the process conditions of the full-scale device, are determining in association
with (8.49 b) and the known temperature (Tp)y the conditions necessary for model
experiments:
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Yom (Tn—Tw)m = O
YoM (Tout—Twm = Oout
(Tin + Tw)m = 2(To)m (8.51)

Employing I1g, which is also given by the full-scale operational value, the through-
put qu in the model apparatus can be determined according to (8.49 c):

qu =g [g (p/wWn’"? (8.52)

The only objective of the model experiments is now the determination of the rotational
speed of the wipers (and the power Py, necessary to operate them) required to achieve
the calculated output temperature (T,.)n. When ny and Py are determined by the

model experiment, the corresponding data for the full-scale device can be derived:
1/3

1/3 4,7
(u/p) (e ),
nr=ny ((M/p)?) and PT = PM <m> (853)

In obtaining this result, the discussion concerning the general state of flow is com-
plete. In the following a creeping flow is presupposed. This facilitates the determina-
tion of the appropriate model fluid because instead of two, only one material num-
ber must be now idem, namely:

I'*=T x Pr'/® = idem,

see (8.44). This requirement is fulfilled not only in the point T in Fig. 17, but along
the entire straight line (a). Therefore, several liquids with the respective tempera-
tures can be considered. The determination of the parameters of both the model
and full-scale device proceeds analogously to the general case.

8.5
Material Function in non-Newtonian Liquids

In Newtonian liquids the shear stress T [Pa] is proportional to the shear rate [s™']

T=py—>u=1/y (8.54)

and the proportionality constant is the dynamic viscosity u.

In non-Newtonian liquids p actually depends on the effective shear rate ¥ and
occasionally on its history as well. Such liquids are subdivided accordingly to their
flow behavior into three classes:

1 The viscosity does not depend upon the duration of the shear
2 The viscosity depends upon the duration of the shear
3 The liquid partly behaves like a solid body

These interrelations are recorded in the rheological constitutive equations.



8.5 Material Function in non-Newtonian Liquids | 67

8.5.1
Pseudoplastic Flow Behavior

The pseudoplastic or shear-thining fluids represent the most important group within
the 1st class of materials. Under shear stress aggregates of a dispersion liquid/solid
or liquid/liquid (e.g. dyestuffs) disintegrate into single particles, which then orien-
tate themselves in the direction of flow. Entangled chains of macromolecules of a
polymer solution or melt are stretched, spherical erythrocytes of blood are elongated.
In these cases viscosity is degraded by shear.

In most pseudoplastic liquids, Newtonian flow behavior is observed at sufficiently
low and at high shear rates v, see Fig. 18. Viscosity approaching a constant value
with low shear rates is called the zero-shear viscosity, uo, and its constant value at
very high shear rates is called the infinite shear viscosity, wee.

In a dimensional-analytical discussion of the rheological constitutive equations,
Pawlowski [36] furnished the proof that the rank of the dimensional matrix is always
two. By a convenient association of the quantities contained in them, two dimensio-
nal material parameters can be produced (see Fig. 18):

H - a characteristic viscosity constant, e.g. o, and (8.55)
© - a characteristic time constant, e.g. 1/y, or 1/y__ (8.56)

The relevance list of a process in which a rheological material participates is there-
fore extended by only two dimensional quantities. All the other material parameters
can be transferred into dimensionless pi-numbers I e

Thus the rheological constitutive equation reads

WH =f(¥0, lhneo) — W/ito =f(V/Vo Mrheol) (8.57)

If the viscosity curve is plotted in a log-log scale and the transition range between p,
and peo is represented by a straight line with the slope m < 1, see Fig. 18, then one
speaks about a Ostwald-de Waele fluid whose viscosity curve obeys the so-called
“power law” (U.gr — effective viscosity, K — consistency index, m — flow index):

Uegr = Ky (8.58)

Classical model fluids of this type are aqueous solutions of carboxy-methyl-cellulose
(CMC), polyacrylamide (PAA), Carbopol® (acidic polymers of acrylic acid of Good-
rich), and so on.

Shear rates normally appearing in mixing vessels are in the range of ¥ = 50-500 s,
therefore many liquids behave like an Ostwald-de Waele fluid. This explains why the
power law is so often used to describe rheological behaviour, see e.g. [37, 38].

Many years ago, Pawlowski [5; see there p. 124] pointed to the fact that the equa-
tion (8.58) injures the principle of consistency of physical quantities, because the
dimension of [K] = M L™ T™2 depends on the power m. In temperature dependent
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Fig. 18 Typical course e (V) in pseudoplastic fluids.

viscosities this entails that, for example, in a temperature field the quantity K chan-
ges its dimension from point to point and therefore neither grad K nor K/K, can be
formed.

m is already a dimensionless parameter of the set 1 0. With the aid of parame-
ters H and O, eq. (8.55-56), the power law of Ostwald-de Waele can be transformed
into a dimensionless form. The rheological constitutive equation of an Ostwald-de
Waele fluid reads:

w_ K odh\ -1 w K P |

H™ Qo™ ! (YP) = W, Mo(l/Yo)m_l (v/) (8.59)
In the description of processes in which Ostwald-de Waele fluids take part, H and ©
are included into the relevance list. © can be formulated in a dimensionless manner
as well as by other x quantities relevant to the process. In pipe flow it can be replaced
by (1/v), whereby v and 1 are the characteristic flow velocity and length, respectively.
The Reynolds number then has the following appearance:

2—m,m
Re, = % (8.60)

In stirring, © is represented by n™', whereby n [T™'] stands for the stirrer speed. With
d as the stirrer diameter, the Reynolds number then becomes:

Re, =P 4 (8.61)
For the effective viscosity in pipe flow from (5.59) it follows:

Uegr = K (v/)™ 1 (8.62)
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In the representation of power characteristics, Ne(Re) curves for stirrers in Newto-
nian and non-Newtonian liquids under identical geometric conditions coincide if
the Reynolds number has been formed by the effective viscosity U According to
the concept of Metzner and Otto [39], a direct proportionality between the stirrer
speed, n, and the shear rate, v, exists:

; K K
y=kn — p.=ga= — (8.63)
oy (1-m) (kn)(l )
The proportionality constant, k, depends on the stirrer type; for details see [22, p. 50].
If the Reynolds number is formed with the above formulated pg, then it follows
that:

_nd’ p nd’ p ndzp _ n p

Reyq = - (m-1) — (m-1)__(m-1) — (m-1) (864)
eff K (kn) Kk n K k

If an analogy is assumed between the pressure drop characteristic of the pipe flow
for a non-Newtonian fluid and the power characteristic of a stirrer, then f (Resg, m)

becomes the following expression:

(2—m) ;2 m
r =1 dp m
Re,, = P8(50) (8.65)
2
which at K=y and m= 1 yields Re = nclll p

Therefore, in stirring technology an alternative exists with respect to Ueg One can
take g either from the measured viscosity curve or from the corresponding Ost-
wald-de Waele “power law” (8.58) or else the concept of Metzner and Otto (8.63). With
respect to the above explanations, the second alternative should be avoided. One
should use g which corresponds to the effective shear rate in the measured viscos-
lty CUrve Uefr (Y) A Uefr (k n)'

According to (8.57), the material function of pseudoplastic fluids (Ileo = m),
whose viscosity obeys the power law of Ostwald-de Waele, can be represented in the
pi-space:

{u/vo, v/¥,, m}

Henzler [40] correlated the viscosity behavior of aqueous CMC and Xanthan solu-
tions in this pi-space with good success, as can be seen in Fig. 19. The fitting line
corresponds to the process equation

Wito = (1+ (/7,)*¢ ~™)712 (8.66)
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Fig. 19 Dimensionless, standardized material function of some
pseudoplastic fluids; from [40]. For the meaning of ¥,
see Fig. 18.

8.5.2
Viscoelastic Flow Behavior

The viscoelastic fluids represent the 3rd material class of non-Newtonian fluids. Many
liquids also possess elastic properties in addition to viscous properties. This means
that the distortion work resulting from a stress is not completely irreversibly conver-
ted into frictional heat, but is stored partly elastically and reversibly. In this sense,
they are similar to solid bodies. The liquid strains give way to the mechanical shear
stress as do elastic bonds by contracting. This is shown in shear experiments (Fig.
1.27) as a restoring force acting against the shear force which, at the sudden ending
of the effect of force, moves back the plate to a certain extent.

In viscoelastic fluids at steady-state laminar flow, besides shear stress t=0y; = v,
normal stresses are observed in all three directions:

in the direction of flow O11+p
perpendicular to the direction of flow  0,, + p and 033 + p (8.67)

The isotropic pressure, p, can be eliminated by the formation of normal stress diffe-
rences:

1. normal stress difference Ny =011 - 09 (8.68)

2. normal stress difference N, = 0y — 033 (8.69)
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N, values are always lower than N, values, see e.g. [40]. Therefore for many proces-
ses taking into consideration only N; will suffice. The normal stress differences are
independent of the direction of flow and, in laminar flow (low ¥), are proportional to
2. In following = t/y for a Newtonian fluid, normal stress coefficients \; = Ny /¥*
and v, = N,/¥* are occasionally used. Their dependence on the shear rate (y)
describes the non-linear viscoelastic behavior of the fluid.

For a correct dimensional-analytical representation of the viscoelastic behavior of
a fluid, the ratio of normal stress to shear stress is used. The so-called Weissenberg
number is defined as

Wil ENl/T (870)

In Fig. 20 Wi; values as a function of ¥ are represented for aqueous CMC and PAA
solutions.

Frequently, a characteristic relaxation time, A, is used to describe viscoelastic be-
havior. It is a measure for the time needed to transform the reversibly-elastically sto-
red energy into friction heat:

h=Ny/(2T7) = Wig/(2 ) (8.71)

If, according to the concept of Metzner and Otto, ¥ is replaced by the stirrer speed n,
then (8.71) can also be written as

De=Ln A \{=Wiy/2 (8.72)

The product n A is named Deborah number, De.

T
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Fig. 20 (Wiy, 7)) dependence for CMC and Xanthan solutions; from [40].
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Fig. 21 Dimensionless standardized material function of some viscoelastic fluids; from [40]

Fig. 21 shows the dimensionless, standardized material function of two viscoelas-
tic fluids, whose dependences Wi; (y) were given in Fig. 20. The fitting line corre-
sponds to the process equation

Wi/ Wio = (7/7,)* + (7/7,)° (8.73)

(Exponents a and b have different values depending on the respective substance; see
the inset in Fig. 21.)

8.6
Pi-space in Processes with non-Newtonian Fluids

As previously mentioned, the transition from Newtonian to non-Newtonian fluids
has the following consequences with respect to the enlargement of the pi-space:

a) All pi-numbers of the Newtonian case also appear in the non-Newtonian
case, whereby u is replaced by the quantity H (usually w) with the same
dimension, see eq. (8.55).

b) An additional pi-number is included which contains © (usually 1/y,).

¢) The pure material numbers are increased by I e

This will be demonstrated on the heat transfer characteristics of a smooth straight
pipe. a is valid for the temperature independent viscosity and b for the temperature
dependent viscosity:
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Newtonian fluid non-Newtonian fluid
a Nu, Re, Pr Nu, Rey, Pryy, vO/L, ITihe0
b Nu, Rey, Pro, Y()AT Nu, Rep,, Pryo, VGO/Lv YHOAI Y(—)/YHy Hrheol (874)

In case b), W/ and yu,AT, respectively, as well as yg/yy have to be added (yo =
dln®/IT).

In addition, it can happen that in the non-Newtonian case completely new pheno-
mena take place (e.g. shaft climbing by a viscoelastic fluid against the acceleration
due to gravity, the so-called Weissenberg effect), this calling for additional parame-
ters (in this case g).

8.7
Scale-up in Processes with non-Newtonian Fluids

Due to the fact that the rheological properties are usually not fully known, one is
forced to perform model experiments with the same substance which is used in the
full-scale process. Thanks to

Hmaterial (here PrH: Hrheol) = ldem

the process therefore takes place in a pi-space which is enlarged by only one pi-num-
ber (namely vO/L) with respect to the Newtonian case, see (8.74).

However, in the transition from model to full-scale, a complete similarity cannot
be achieved. This is because in using the same material system Reyy = p v L/H =
idem, v ®/L=idem cannot be ensured at the same time. It is recommended to use
the same material system, but to change the model scale. An exception to this is
represented by pure hydrodynamic processes in the creeping flow region (p irrele-
vant) at steady-state and isothermal conditions. Here mechanical similarity can be
obtained in spite of constant physical properties; see Example 26: Single-screw
machines.

Example 18: Homogenization characteristics in viscoelastic liquids

Homogenization of miscible liquids, i.e. leveling out the concentration differences
by stirring, is represented in Newtonian liquids by the pi-space

{n0, Re, type of stirrer, installation conditions}.

0 is the mixing time necessary for the attainment of a complete molecular-homoge-
neous mixture (see [22], chapter 3, and Example 21 in this book).

In non-Newtonian mixtures in the laminar and transition range this mixing ope-
ration requires considerably longer mixing times than in Newtonian liquids. This is
due to the fact that in the catchment area of the stirrer higher shear rates and, there-
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Fig. 22 Representation of the test data in the pi-space

{nB, Recs} without taking into account the Wi number.

Reefris formed by the g of the homogenized mixture.

Full signs: downflow, hollow signs: upflow. Plotted curve:
Homogenization characteristics of Newtonian liquids, from [41].

fore, lower viscosities prevail as compared with the bulk of liquid. In addition, be-
tween neighboring flow threads viscous forces counteract the deformation due to
shear whereas inside of these threads the elastic forces oppose the deformation due
to stretching.

In the case of non-Newtonian mixtures, which also exert pseudoplastic and visco-
elastic behavior, the pi-space is widened by the Weissenberg number, Wi. In addi-
tion, it has to be decided which effective viscosity, Ueg, has to enter the Reynolds
number:

{n0, Res, Wi, type of stirrer, installation conditions} (8.75)

Ford und Ulbrecht [41] performed homogenization measurements with aqueous
CMC and PAA solutions in a vessel with a screw stirrer arranged in a central
draught tube. The pumping direction of the screw could be changed as well. Initial-
ly, the liquid with a lower viscosity rested in a layer on top of the more viscous one
(volume ratio @ = 1). The data measured were first represented in the space {n6,
Recsr}, Fig. 22, whereby pog was taken from the flow curve of the homogenized mix-
ture at the shear rate of ¥ ~ 5 s, which was effective in the draught tube.

The greater the difference in viscosity between both mixing components, the longer
the mixing times. They can be extended by a factor of 10 as compared to the Newto-
nian case. The sense of conveying also has a big impact. If the liquid of higher vis-
cosity is mixed into the less viscous one, then the mixing times are shorter as com-
pared to the reverse addition order.
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Fig. 23 Homogenization characteristic of a screw stirrerin a
draught tube for non-Newtonian liquids with pseudoplastic and
viscoelastic properties. For the sign explanation see Fig. 22;
from [41].

These test data are correlated satisfactorily by the Weissenberg number (here defi-

ned as Wi = An) and the term (uo, 1/Wo,2)” which accounts for the pumping direction,
Fig 23. u, represents the starting viscosity of the lower, more viscous liquid (1), and
the upper, less viscous (2) liquid. Upflow: z= 0.059, downflow: z= 0.17.
With respect to the consideration of effective viscosity, the concept of Ford and
Ulbrecht seems not to be conveniently chosen, in spite of the fact that the results in
Fig. 23 are really satisfying. Opara [42] noted that one should not expect to be able to
correlate the mixing times using Ueg and, consequently, Reqg according to the con-
cept of Metzner and Otto, because their concept was founded on power dissipation:
In this case, U is evaluated from shear rates which arise at the highest velocity
differences, whereas for the homogenization process those areas are decisive which
are close to the vessel wall, where the smallest velocity differences exist.

This alternative was examined in later experiments [43] with the same material
system, but it did not produce a better correlation of the n8 values. It is not impor-
tant whether or not Re. is used whose [l.g is determined by the shear rate y=k n
(eq. 8.63), or if one takes Rew whose i, has been determined by the shear rate at
the vessel wall. For a satisfying correlation the Wi term is necessary.

Using the approach of Ford and Ulbrecht, influence of rheological properties
(Newtonian, pseudoplastic, viscoelastic) on the homogenization characteristics was
also satisfyingly taken into account for turbine stirrers [44] and other stirrer types
[45].
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9
Reduction of the Pi-space

Let us once more recall the statement of the pi-theorem (section 2.7):

Every physical relationship between n physical quantities can be reduced to a rela-
tionship between m= n — r mutually independent dimensionless groups, whereby r
stands for the rank of the dimensional matrix, made up of the physical quantities in
question and is generally equal to (or in some few cases smaller than) the number
of the base quantities contained in their secondary dimensions.

In fact, this actually means that the pi-set could be reduced if one succeeds to
enlarge the base dimensions of the dimensional system. However, it must be consi-
dered that in the enlargement (reduction) of a dimensional system the relevance list
must also be enlarged (reduced) by the corresponding dimensional constant by
which the number of the resulting pi-numbers is not changed. However, it can turn
out that in the enlargement of the dimensional system the additional dimensional
constant is, a priori, irrelevant to the problem. In this case, it need not be incorpora-
ted into the relevance list and the number of pi-numbers is, in fact, reduced by one.

9.1
The Controversy Rayleigh — Riabouchinsky

In his famous and extremely short essay entitled “The principle of similitude” Lord
Rayleigh [4] discussed 15 different physical problems which can be condensed to
laws by using dimensional analysis without performing any experiments. The last
of these examples concerned the “Boussinesq problem” of the steady-state heat trans-
fer from a fixed body to a ideal liquid flowing with the velocity of v.

He considered, in his own words, “somewhat in detail, Boussinesq’s problem of
the steady passage of heat from a good conductor immersed in a stream of fluid
moving (at a distance from the solid) with velocity v. The fluid is treated as incom-
pressible and, for the present as inviscid, while the solid has always the same shape
and presentation to the stream. In these circumstances the total heat, Q, passing in
unit time is a function of the linear dimension of the solid, 1, the temperature diffe-
rence, AT, the stream velocity, v, the capacity for heat of the fluid per unit volume,
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pC,, and the conductivity, k. The density of the fluid clearly does not enter into the
question.” Thus, we obtain the following relevance list:

{Q. 1, AT v, pC,, k} (9.1)

These six quantities contain four base dimensions [L, T, ®, H], wherein H means
the amount of heat with calorie as measuring unit. According to the pi-theorem, a
dependence between two pi-numbers will result. Rayleigh obtained the following
two pi-numbers which are today named: The Nusselt number Nu and the Péclet
number Pe, the latter being the product of Reynolds and Prandtl numbers, Pe =
RePr:

Q _hl _f(l PSy V) —  Nu =f(RePr) (9:2)

Real liquids display a physical property which is named viscosity. Only after the
kinematic viscosity, v = u/p, is introduced can the product RePr be taken apart:

— =f<l pip L pclf V) — Nu = f(Re/Pr, Pr) — Nu = f(Re, Pr) (9.3)
Out of 7 x-quantities and 4 base dimensions we now obtain 7 — 4 = 3 pi-numbers.

Lord Rayleigh pointed out that one can deduce valuable information from the
above interdependence (9.3) although it is an arbitrary function of the two variables.
The latter of them appeared to be constant for any given kind of gas (compare to
Example 5) and seemed to vary only moderately from one gas to another. Therefore,
we are left with Nu = f(Re); for each v 1= const therefore the functional dependence
fremains unchanged.

Four months after this publication a “Letter to the Editor” of D. Riabouchinsky [46]
appeared in Nature. He pointed out that Lord Rayleigh considered heat, temperature,
length and time as four independent units. If we suppose that only three of these
quantities are really independent, we obtain a different result. For example, if the
temperature is defined as the mean kinetic energy of molecules, the principle of
similitude allows us only to affirm that

1pC, v 3
ear =/ (T oG, 1) (94)

If this is considered, then equation (9.2) is extended by another argument and, as a
consequence, with two arguments is much more arbitrary than with one argument.

In his reply, Lord Rayleigh [47] referred this objection to the field of logic and
explained that his conclusion has followed on the basis of the usual Fourier equa-
tions of heat, in which heat and temperature are regarded as sui generis. He added:
“It would indeed be a paradox if the further knowledge of the nature of heat afforded
by molecular theory put us in a worse position than before in dealing with a particu-
lar problem. The solution would seem to be that the Fourier equations embody som-
ething as to the nature of heat and temperature which is ignored in the alternative
argument of Dr. Riabouchinsky.”
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(Lord Rayleigh is completely right with this latter sentence, as it will be shown
later on.) After that, this problem was put aside as being unsolved and was called
the “Riabouchinsky paradoxon’. Obviously, this was to much for engineers, and phy-
sicists, who were spoken to, were not interested. However, the solution to this prob-
lem is in fact rather easy.

It is correct to state that according to the Theory of Gases energy can be expressed
as temperature. However, this is advantageous and reasonable only if the physical
process is governed by molecular events. For macroscopic interrelations like the
Boussinesq‘s problem, the molecular nature of the gas is irrelevant. Here, the micro-
scopic parameters are replaced by mean values of the macroscopic ones, these
appearing in measurable physical properties such as specific heat and heat conducti-
vity. To equate energy with temperature as Riabouchinsky did, introduced irrelevant
physics to the problem. See also the remarks of L.I. Sedov [48, p. 40+].

Furthermore, one has to bear in mind that relating energy with temperature
implies the consideration of the Boltzmann's constant, k. However, this natural con-
stant will play a role in a physical problem only if the molecular nature of matter is
involved, otherwise it is irrelevant.

Example 19: Dimensional-analytical treatment of the Boussinesq’s problem

In dealing with Boussinesq’s problem, Lord Rayleigh used the amount of heat H (measu-
ring unit: calorie) as one of the then used base dimensions. Only since the introduction
of SI (Systéme International d’Unités) it was required to make no distinction between
heat and mechanical energy, because both were considered to be equal. In order to com-
ply with this requirement, the Joule equivalent of heat J [M L* T~ H™'] had to be introdu-
ced as a natural constant in the relevance list. If we proceed from the assumption of an
“inviscid”, ideal liquid, no mechanical heat can be converted into heat. In this case, J is
irrelevant.

a) Procedure of Lord Rayleigh

Relevance list:

Target quantity: amount of heat, Q

geometric parameters: characteristic measurement of length, |

material parameters: volume-related heat capacity, pC,,
heat conductivity, k

process-related parameters: velocity of flow, v

temperature difference, AT

{Q 1, pCp, k, AT, v} (9.5)
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I k AT pC, 0 v
L 1 -1 0 -3 0 1
T 0 -1 0 0 -1 -1
o) 0 -1 1 -1 0 0
H 0 1 0 1 1 0
L+2T+3H 1 0 0 0 1 -1
-T 0 1 0 0 1 1
©+H 0 0 1 0 1 0
H+T 0 0 0 1 0 -1

Formation of pi-numbers:

vlpC

I Nu II X P = RePr = Pe (9.6)

~Q
TATk :

1
Conclusion: The carried out dimensional analysis fully proves Lord Rayleigh.

b) Procedure of D. Riabouchinsky

Relevance list: {Q, 1, pC,,, k, v, AT, k}
Dimensional matrix:

I k AT pCp Q v k
L 1 -1 0 -3 0 1 0
T 0 -1 0 0 -1 -1 0
(S 0 -1 1 -1 0 -1
H 0 1 0 1 1 0 1
L+2T+3H 1 0 0 0 1 -1 3
-T 0 1 0 0 1 1 0
©®+H 0 0 1 0 1 0 0
H+T 0 0 0 1 0 -1 1

Formation of pi-numbers:

vlpC

- =k (9.7)

P =RePr=Pe II, =X
5 ePr = Pe ; 13pCp
k* is the pi-number, which also Riabouchinsky would have obtained, only it must be
cancelled here because of the irrelevance of k. Consequently, we are left with the pi-

set obtained by Lord Rayleigh.

Example 20: Heat transfer characteristic of a stirring vessel

In Rayleigh’s treatment of the Boussinesq’s problem, we realized that Joule’s heat
equivalent had to be cancelled, because in this problem the liquid was supposed to
be an ideal one. This is — of course — as with many problems arising in the areas of
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the mechanical and thermal process engineering not the case. One only has to think
of screw machines, where a large mechanical power input is transformed into heat.
In such cases the J containing pi-number must not be disposed of. In this context,
the heat transfer characteristics will be discussed, whereby from one part the dimen-
sional system {M, L, T, ®} and from the other {M, L, T, ®, H} will be used.

Relevance list:
target quantity: heat transfer coefficient at the inner wall, h
geometric parameter: vessel and stirrer diameters: D, d
material parameters: density p; viscosity y; temperature coefficient of viscosity, Yo;
heat capacity C,; heat conductivity, k
process parameters:  stirrer speed, n
temperature difference, AT, between wall and liquid

The complete 10-parametric relevance list reads:
{h; D, d; p, W, Yo, Cp, k; m, AT} (9.8)

A Dimensional system {M, L, T, ©}

p d n AT h C, k w D Yo
M 1 0 0 0 1 1 1 0 0
L -3 1 0 0 2 1 -1 1 0
T 0 0 -1 0 -3 -2 -3 -1 0 0
(C] 0 0 0 1 -1 -1 -1 0 0 -1
M 1 0 0 0 1 0 1 0 0 0
L+3M 0 1 0 0 3 2 2 1 0
-T 0 0 1 0 3 2 3 1 0 0
) 0 0 0 1 -1 -1 -1 0 0 -1

The following six pi-numbers are produced:

C AT -
Hl — hd%]; H2 — (fZ 5 11 1( AT I, = u Re !
p n n

H5=D/d H6='YOAT

Pi-numbers IT;, IT, and IT; have an unusual appearance. We shall first combine IT;
and IT;:

1, I, =h d/k — h D/k = Nu (Nusselt number).
Then, IT, will be transformed by I13 and I1, into a pure material number

I, I, T, " = Cpu/k = Pr (Prandtl number).
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Alas, we don’t recognize the pi-number II; and, therefore, have no idea about its
significance. Otherwise, I, is the inverse value of the Reynolds number and IT; as
well I speak for themselves.

The dimensional analysis performed with the dimensional system {M, L, T, ®}
delivers, for the heat transfer characteristic of a stirring vessel, the following 6-para-
metric pi-set:

{Nu, Pr, I3, Re, yoAT, D/d} (9.9)
whereby the significance of the pi-number I1; is not obvious.

B Dimensional system {M, L, T, ®, H}

p d n AT k h C J] w D Yo
M 1 0 0 0 0 0 -1 1 1 0 0
L -3 1 0 0 -1 -2 0 2 -1 1 0
T 0 0 -1 0 -1 -1 0 -2 -1 0 0
(S 0 0 0 1 -1 -1 -1 0 0 0 -1
H 0 0 0 0 1 1 1 -1 0 0 0
M 1 0 0 0 0 0 -1 1 1 0 0
3M+L+H 0 1 0 0 0 -1 -2 4 2 1 0
-T-H 0 0 1 0 0 0 -1 3 1 0 0
©+H 0 0 0 1 0 0 -1 0 0 -1
H 0 0 0 0 1 1 1 -1 0 0 0

The following seven pi-number result from this:

M, =fd=n m, = Spdn 1. = JATK

L o > 7 pd'n’
rLtEPC?ZnERei1 ILI, =Cu/k=Pr Il E%
IT, = v,AT H;1H4 E% _

In both dimensional systems, pi-number IT; has been produced which, after combi-
nation with the Reynolds number, can be recognized as Brinkman number Br. As
long as the heat production can be neglected as compared with the heat removal, IT;
and Br, respectively, also remain negligible and can therefore be deleted. The com-
plete pi-set then reads:

{Nu, Pr, Re, D/d, YA T} (9.10)
In spite of the fact that both dimensional systems yield the same pi-sets, it is the

second one which allows, by the appearance of J in one of the pi-numbers, its inter-
pretation and the decision about its relevance.
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10
Typical Problems and Mistakes in the Use of
Dimensional Analysis

Occasionally, one could have read about the failures of the Theory of Similarity or of
its limits. However, this criticism has arisen when, due to some physical reasons, a
complete similarity could not be achieved (see e.g. remarks of Damkdéhler [113] on
p- 183) or the scale-up criterion could not have been worked out with certainty
because the measuring conditions did not allow it (false model scale, wanted sensiti-
vity of the target quantity, non-availability of the model material system, ignorance
about relevant physical properties, such as in foams and sludges, etc.).

When problems arise in model experiments for the above mentioned reasons, one
cannot put the blame on an epistemologically and mathematically sound method.

The problems in connection with the non-availability of a model material system
were already discussed in section 6.1. It has been shown how these problems can be
handled by model measurements in differently scaled pieces of equipment. Only in
cases where this option is too expensive (e.g. ship-building), can one depend on
methods employing conditions of partial similarity (section 6.2).

In contrast, this chapter deals with widespread problems related to the measuring
techniques. The majority of them have been taken from the area of stirring technol-
ogy which is particularly familiar to the author, see [22] and [49].

10.1
Model Scale and the State of Flow; Problems Concerning Mini Plants

Model measurements are normally executed in laboratories and the size of the labo-
ratory equipment complies with the size of the premises. Usually, this is not a draw-
back, but in some cases the situation is grave. One of the main problems concerns
the state of flow in the measuring device, this being exceedingly scale-dependent.
Interestingly, this particular problem was never recognized by university researchers
as such. Here, two typical problems are presented:
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10.1.1
Bubble Columns

In the determination of the target quantities “gassed liquid height” and mass trans-
fer coefficient, k;a, employing laboratory bubble columns with diameters of only a
few centimeters, occasionally piston bubbles were observed. Above the gas sparger
(mostly a sintered plate), primary tiny gas bubbles are produced and these coalesce
to give bigger ones. Flow regions exist, where these big bubbles fill up the whole
cross-sectional area of the column (so-called “piston bubbles”). It has been reported
that the diameter of the column has to exceed D = 8 cm in order to avoid this situa-
tion.

There is no doubt that such state of flow cannot exist in an industrial bubble
column of D » 1 m. If somebody wanted to scale-down the state of flow of a full-
scale bubble column (the same process point in the pi-space) to a laboratory one,
one would have to know what parameters in the full-scale bubble column are of real
importance.

The proneness of the primarily produced minute gas bubbles to coalescence
depends on three parameters: a) on the size of the primarily produced gas bubbles;
b) on the material system; c) on the state of flow in the bubble column [50]. There-
fore, fixing the minimum diameter of a bubble column is surely not a sufficient cri-
terion. One would have to carry out preliminary tests in differently scaled columns
to find out the necessary minimum size of the model bubble column, see also
Example 34.

10.1.2
Stirring Vessels

In stirring, distinction is made between micro- and macro-mixing. Micro-mixing
concerns the state of flow in the tiniest eddies. It is determined by the kinematic
viscosity, v, of the liquid and by the dissipated power per unit of mass, ¢ = P/pV.
Correspondingly, the so-called “Kolmogorov’s micro-scale A of the turbulence” is laid
down as being A= (v*/g)'/*. (By the way, this equation is clearly derived from dimen-
sional analysis!)

Micro-mixing is important in such stirring operations where the result depends
upon the size of the smallest eddies, for example dispersion processes in liquid/lig-
uid systems and shear damage to microorganisms. Therefore, it is not surprising
that in such tasks it is the volume related power, P/V, that counts; it is an intensively
formulated process quantity.

Macro-mixing concerns the state of flow produced by the stirrer in the vessel. The
stirrer generates primary eddies whose size is of the same order of magnitude as the
stirrer diameter d. The macro-scale, A, is therefore given by A o d. It is described by
the hydrodynamical pi-numbers such as Re =n d*/v, Fr =n” d/g, and the like.

In the study of mixing operations which depend upon macro-mixing, the prob-
lem of the size of the experimental device therefore exists. Kipke [51] pointed out
that in devices of industrial size with D > 3 m, the dimensions of the primary eddies,
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A+, broadly exceed those of the laboratory device, Ay;. Weber [52] referred to the fact
that in industrially sized reactors a highly turbulent state of flow corresponding to
Re > 10° exists. To obtain this in a laboratory device, vessel sizes of Dy > 1 m are
necessary.

This statement from Weber [52] hits the nail on the head. In a laboratory stirring
vessel the state of flow corresponding to Re > 10° cannot be achieved, that is, the
same Re value in the pi-space cannot be reproduced. If one would still want to
achieve it by extremely intensive stirring, one would have to accept strong heat de-
velopment and, because of this, an additional pi-number (here: Brinkman number)
would come into play. In this case, the pi-space in the laboratory-scale would then be
different to that in the industrial-scale.

From the viewpoint of dimensional analysis, the terms macro-mixing and micro-
mixing used in the Theory of Turbulence are misleading, because they confuse the
issue discussed above. In performing model experiments it does not matter whether
the state of flow corresponds to the macro- or micro-mixing, but whether we succee-
ded in obtaining the working point of the same pi-space.

10.1.3
Micro-reactors and Mini-plants

The above remarks throw a critical view onto the contemporary efforts to simulate
entire chemical processes on the smallest possible scale. Beyond all doubt, this tech-
nology can produce the proof about the feasibility of a synthesis. In addition, all pro-
cess steps carried out in a homogeneous medium and dependent on micro-mixing,
will be correctly executed on the micro-scale. Furthermore, the scale-dependent pro-
cess steps will also be carried out in a satifactory manner on the micro-scale, because
their scale-dependence could not express itself. But: from these results no statement
concerning the scale-up can be made! In other words: Mini-plants are not suitable to
gain any scale-up rules for scale-dependent steps.

Additional aggravating circumstances arise from the fact that chemical steps
which are transfer limited will proceed differently in the industrial plant than on
laboratory-scale. The selectivity of multiple reactions such as competing consecutive
and parallel reactions depend very much on the extent of micro-mixing in the
system. These facts are well known from Chemical Reaction Engineering textbooks.
Conversely, these reactions are carried out to obtain details about the extent of
micro- and macro-mixing in stirring.

10.2
Unsatisfactory Sensitivity of the Target Quantity

Due to the largely developed field of chemical process engineering, there are possi-
bly only a few targets left whose sensitivity is not satisfying; from the area of stirring
technology two of them will be presented in the following as examples.
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10.2.1
Mixing Time 0

In the leveling out of concentration differences in mutually soluble liquids to a
molecularly homogeneous level by mixing (“homogenization”), the necessary ho-
mogenization or mixing time 0 [T] is visually determined by a chemical decoloriza-
tion method (e.g. neutralization reaction with phenolphthalein as indicator), see
also Example 21. In the turbulent flow range (Re > 10%) in the laboratory vessel, the
mixing time only accounts for a few seconds. Because of this, measuring accuracy
and the reliable determination of the scale-up rule suffer.

In order to obtain a reliable scale-up rule one would have to perform measure-
ments in larger vessels (D > 1 m) [52]. Unfortunately, in this case, this otherwise
outstanding and comprehensive decolorization method fails completely: thick water
layers glimmer pale blue and the white painted vessels make the perception of the
color change difficult. Consequently, in this field, computational fluid dynamics
(CFD) will possibly provide a solution.

10.2.2
Complete Suspension of Solids According to the 1-s Criterion

A further exceedingly important mixing operation consists of whirling up solid par-
ticles (“suspension of solids”) to obtain their surfaces completely accessible to the
surrounding liquid (dissolution of salts, solid catalyzed reactions in a S/L/G system,
and so on). To work out the criteria important for this task, research concentrated on
measuring the “critical stirrer speed” necessary for the flow state in which no parti-
cle lingered longer than 1 second on the bottom of the vessel.

Firstly, it has to be taken into account that criteria which characterize a state of
flow have to be formulated in a dimensionless manner. Already W. Froude found in
his experiments to determine the drag resistance of a ship’s hull that the bow wave
can only be reliably determined when the size of the ship model has the right pro-
portions with respect to the travelling speed and channel width.

In case of “1-s criterion”, we are dealing with an easy to allocate, but an inaccurate
quantity with a low sensitivity: Who is able to decide, by purely visual means, if the
time was 0.7 s or 1.3 s? Anyway, who is able to use this criterion in a vessel of D >
0,5m?

However, the fact that this criterion is not dimensionless is not of great import-
ance because of its low sensitivity.

If one would chose a dimensionless time, e.g. t* =t (g/D)"/? instead of t [T], no
advantage would be gained (see Table 4). In this representation, for four differently
sized vessels of D = 0.2-2.0 m, the left hand side indicates how the pi-number, t*, is
changed for t= 1 s. In the transition from D = 0.2 — 1.0 m, t* is changed only by a
factor of 2.2. The right hand side of the table shows how the 1-s-criterion should be
changed in scale-up to satisfy t* = const.
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Table 4 Correspondence between 1-s criterion and
the time number t* = t (g/D)"/? when D is changed
by a scale factor of u=1:10

D [m] t[s] t* t* t[s]
0.2 1 7.07 7.07 1.00
0.5 1 4.47 7.07 1.58
1.0 1 3.16 7.07 2.23
2.0 1 2.23 7.07 3.17

By the introduction of the 90 % “layer height ratio”, h* = hy/H = 0.9 (h, — height of
the suspension layer, H — liquid height in the vessel), a convenient resort from the
1-s criterion has been found; see. [22].

10.3
Model Scale and the Accuracy of Measurement

In section 7.3 (Experimental Techniques for Scale-up), it has already been mentio-
ned that the model size depends on the scale factor u = 11/l and on the measuring
accuracy attainable in the tests. At p= 10 a measuring accuracy of + 10 % will possi-
bly not suffice and one will therefore have to chose a larger model scale to reduce
the scale factor p.

Measuring accuracy often depends on model scale. This is demonstrated with
two examples taken from the area of stirring technology.

10.3.1
Determination of the Stirrer Power

Before a torsion shaft with strain gauges was employed to determine the torque on a
rotating stirrer shaft, a swiveling motor had to be used and the torque measured by
weighing.

In the latter case, friction loss in the motor and shaft bearings was automatically
included in the measurement. In small stirrers, this was of the same order of
magnitude as the power consumption of the stirrer. Therefore, at that time, rapidly
rotating stirrers had to have diameters of d > 10 cm.

10.3.2
Mass Transfer in Surface Aeration

The determination of the overall mass transfer coefficient, k;a, using O, electrodes
has an accuracy of + 5 %. This suffices to determine the process characteristic in the
so-called volume aeration in stirring vessels, as has been demonstrated by a compa-
rative evaluation of measurements in vessel sizes covering liquid volumes from V =
2.5 liters to 906 m® [53].
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Compared with this, so-called surface aeration brings about a comparatively modest
oxygen uptake. Therefore, it is important to very accurately measure and/or to use a
larger model scale. The latter is advisable because the diameters of the full-sized
surface aerators amount to dr = 3 m and, therefore, the scale factor surpasses p= 10,
even if a relatively large laboratory stirrer diameter of dy = 0.3 m is used.

In surface aeration, the absorption rate is also measured with O, electrodes in the
liquid volume. By this method, the liquid-side overall mass transfer coefficient, k;a,
is determined (a — volume-related mass transfer area = surface of all gas bubbles in
the liquid volume). Due to the fact that the mass transfer in surface aeration occurs
almost solely in the liquid surface, A, and by no means in the liquid volume, V, the
measured k;a has to be multiplied by V to obtain the target quantity kjA=k;a V.

The evaluation of own measurements [54], which were performed on a laboratory
scale of dy; = 0.09-0.27 m in the pi-space

1/3 2
(ki A)* = f (Fr) - k&—f‘ (3) =r(z9). (10.1)
left open the question whether this pi-space is an applicable one or a further pi-
number containing the diameter d must be added to properly accomplish the corre-
lation, see Fig. 24.

If the correlation (k;A)* = f (Fr) is taken as being valid, then this leads, in associa-
tion with the known power characteristic of the surface aerators, to the devastating
result that the efficiency E [kg O,/kWh] of the surface aerators diminishes proportio-
nally to the square root of the scale factor:

Er=Eyu'/? (10.2)
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Fig. 24 Mass transport characteristics of the turbine stirrer in surface aeration; from [54, 55]
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In case of a realistic scale factor of u= 10, this means that the efficiency of the full-
scale device would only be 32 % of that of model scale.

Not until the extremely accurate measurements of Schmidtke and Horvat [55]
were published and, thereafter, evaluated by the author in the same pi-frame (see
Fig. 24), was it possible to guarantee that the sorption characteristic is not given by
(kpA)* = f (Fr). Now, it turned out that an additional pi-number (the Galileo number
Ga = Re?/Fr = d’g/v?), containing the stirrer diameter, d, had to be introduced in
order to satisfactorily complete the correlation. In plotting

(kiA)* Ga 0115 = f(Fr) (10.3)

the straight lines for different diameters coincide, whereas the correlation of the
measuring points shown in Fig. 24 by different signs is not worth mentioning. This
proves that their scattering is due to the inaccuracy of the measuring method.

From the accurate correlation, eq. (10.3), it follows that a completely different
interrelation between the efficiency E [kg O,/kWh] and the scale factor exists:

Er=Ey uo"® (10.4)

This states that at a scale factor of u = 10 the surface aerator would still have an
efficiency 70% of that measured on a laboratory device.

10.4
Change of Scale in Model Experiments to Locate the Correct Scale-up Rule

It has already been pointed out that experiments in differently scaled models are
inevitable if physical properties cannot be changed and therefore one has to use the
same material system (Example 8: Mechanical foam breaker, section 6.1). The same
is true if the acceleration due to gravity is influencing the process under investiga-
tion. However, as we all know, gravity cannot be varied on Earth (Example: Surface
aeration, section 10.3.2) .

There are some more dimensional-analytical problems whose clarification is
indispensably dependent upon model experiments in differently sized models.

One of these will be introduced and discussed in the following section.

10.4.1
Mass Transfer in Volume Aeration

Due to the approximate uniformity of the intensively mixed gas/liquid system and,
therefore, the intensity character of the target quantity k;a, the influencing process
quantities (stirrer power P, air throughput q) have to be formulated in an intensive
manner as well. Now, the question arises whether, in addition to the volume-related
stirrer power, P/V, the gas throughput also has be formulated as a volume-related
one (q/V), or if its inclusion as the so-called superficial velocity vg = q/S (as accurate
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in bubble columns) is correct. A differentiation between q/V and q/S is impossible
when experiments are performed on the same model scale. Here too, are model
measurements in differently scaled vessels indispensable.

Judat’s [53] comparative evaluation of nine publications concerning mass transfer
in the air/water system in vessels equipped with turbine stirrers has already been
mentioned. The vessel sizes covered liquid volumes from V = 2.5 liters to 906 m?
(w=1:71). This evaluation unambiguously proved that the process equation is pre-
sented in the following pi-space
1/3

{(q2)*, (B/V)*, vE} — {kLa(Vz) PN /} (10.5)
& pivg) " (vg)
It is surely interesting to note that in volume aeration the sorption rate (k;a)
depends on the volumerelated power P/V and on the surface area-related gas
throughput vg = q/S (superficial velocity).

10.5
Complete Recording of the Pi-set by Experiments
In this section the following question has to be clearly answered:

“Under which circumstances does a pi-relationship hold true if certain
x-quantities are not varied in the respective experiments?”

This important question has been answered by Pawlowski [56] as follows:

e A pi-relationship is not secured if a pi-number can be produced out of param-
eters, which were not altered in the experiments, so that this pi-number
remained unaltered.

This is illustrated by two examples:

a) The pertinent relevance list for the heat transfer at the wall of a stirring vessel
reads:

{h; d; p, v, Cp, ks n}
and the corresponding pi-set follows to:
{Nu, Re, Pr} Nu=hd/k,Re=nd’/v, Pr=pC,v/k

Under which test conditions is this pi-relationship secured?

not varied varied pi-numbers remaining  result
x-parameters x-parametetrs constant
physical properties d,n Pr negative

d,n physical properties no positive
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b) Stirring power in a unbaffled vessel:
{P:d;p, vim, g}
and the corresponding pi-set:
{Ne, Re, Fr} Ne=P/(pn*d’),Re=nd?’/v,Ga=gd®V?

Under which test conditions is this pi-relationship secured?

not varied varied pi-numbers remaining result
x-parameters x-parameters constant

d,gp,v n Ga negative
dng physical properties Fr negative
dg physical properties, n no positive
g, physical properties n,d no positive
10.6

Correct Procedure in the Application of the Dimensional Analysis

In this section, a summary will be provided about how dimensional analysis can be
properly utilized in order to obtain, with a minimum of time and expenditure, the
results necessary for the determination of both the pi-relationship (process charac-
teristic) of the process in question and a valid scale-up rule. In this context, nothing
new will be imparted. All of this information has already been disclosed in previous
chapters.

10.6.1
Preparation of the Model Experiments

Compiling the relevance list

Dimensional analysis should be carried out before the experiments are executed. The
relevance list should be compiled as completely as possible and, on its foundation,
the pi-set can then be determined. Depending on the circumstances, some orienta-
ting preliminary experiments will be necessary in order to verify or falsify the rele-
vance of the one or other x-quantity.

Decision about the size of the model apparatus

The model scale depends on the size of the full-scale device and on the achievable
measuring accuracy. Low measuring accuracy or a target quantity displaying a low
sensitivity can be possibly counteracted by increasing the scale factor u, in other
words, the model scale should be as large as possible.
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10.6.2
Execution of the Model Experiments

It has already been pointed out that in model experiments the pi-number and not
the x-quantity should be varied. This results in various advantages. On the one
hand, the pi-number is varied by changing the most available, the most manageable
or the cheapest x-quantity constituting it (example: changing the Reynolds number
by varying the kinematic viscosity of the fluid). In addition, the evaluation of the test
results is made easier, because in varying a certain pair of pi-numbers, the numeri-
cal values of all the other pi-numbers remain constant (IT; = idem).

10.6.3
Evaluation of Test Experiments

The evaluation of the test experiments will be shown using an example (Example 34
“Gas hold-up in bubble columns”). It must be noted that this purposeful approach is
often not complied with. It is simply false to plot a pi-number Y as a function of a pi-
number X and to note that, in doing so, the one or the other dimensional quantity
remained constant. In the representation Y(X) all remaining pi-numbers have to be
constant (IT;= const)!

The author is aware of the fact that numerical data recording and processing
enjoys great popularity these days. Numerical and graphical data processing can go
well, but sometimes it’s bound to go wrong.

A serious disadvantage of automated data processing is the fact that the resear-
cher is deprived of those hours of leisure, in which he or she plotts results in silence
and seclusion on the double-log scale and this opportunity is used to think over whe-
ther or not the data evaluated in this way make sense or if they should rather be
represented in another fashion. No graphical representation of test data is in the
first instance more suitable than that on the double-log scale. This approach shows
better and quicker whether it is suitable for the description, or if a simple-log scale
would possibly fit better. Furthermore, curves on the double-log scale can easily be
converted into straight lines (Y = aX” + b) or in simple analytical expressions of the
form (Y = aX“ + bXP). Of course, a statistical balancing of the coefficients and expo-
nents can be left to the computer afterwards.
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11
Optimization of Process Conditions by
Combining Process Characteristics

In this chapter, three examples are introduced to exemplify the possibility of optimi-
zing a process with respect to the desirable objective by the appropriate combination
of process characteristics.

Example 21: Determination of stirring conditions in order to carry out a
homogenization process with minimum mixing work

In order to design and dimension stirrers for the homogenization of liquid mixtures
— and this is by far the most common task when it comes to stirring! — it is vital to
know the power characteristic and the mixing time characteristic of the type of stirrer
in question. If this information is available for various types of stirrers, it is possible
to determine both the best type of stirrer for the given mixing task and the optimum
operating conditions for this particular type.

a) Power characteristic of a stirrer
The power consumption, P, of a given type of stirrer under the given installation
conditions depends on the following variables:
geometric parameters: stirrer diameter, d
physical properties: density, p, and kinematic viscosity, v, of the liquid
process parameters: stirrer speed, n.

The relevance list therefore reads as follows:
{P; d; p, v; n} (11.1)
The (appropriately assembled) dimensional matrix undergoes only one linear trans-

formation to produce the two pi-numbers (Ne — Newton number; Re — Reynolds
number):
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p d n P v
M 1 0 0
L -3 1 0 2 2
T -1 -3 -1
M 1 0 0
L+3M 0 1 0 2
-T 0 0 1 3 1
M=—L _=Ne und I, = =Re ' (11.2)
pd n d n

The experimentally determined power characteristic, Ne(Re), of a blade stirrer of a
given geometry under the given installation conditions (see sketch in Fig. 27) is pre-

sented

in Fig. 25.

From this representation a number of important points can be deduced:

1

Fig. 25
geomet

Re < 20: Ne = Re™' and NeRe = P/(u n” d*) = const, respectively, is valid.
Density is irrelevant here — we are dealing with the creeping flow region.

Re > 50 (vessel with baffles) or Re > 5 x 10* (unbaffled vessel): Ne = P/(p n’
d®) = const is valid. In this case, viscosity is irrelevant, we are dealing with a
turbulent flow region.

The influence of the baffles is, understandably, nil in the laminar flow region.
However, it is extremely strong at Re > 5 x 10*. The installation of baffles
under otherwise unchanged operating conditions increases the stirrer power
by a factor of 20 here!

When stirred in an unbaffled vessel, fluid begins to circulate and a vortex is
formed. The question whether gravitational acceleration, g, and hence the
Froude number, Fr = n® d/g, plays a role under these circumstances can be
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safely answered as being negative on the basis of the test results shown in
Fig. 25: For confirmation, one only needs to look at the points on the lower
Ne(Re) curve where the same Re value was set for fluids with different viscosi-
ties. This was only possible by a proportional alteration of the rotational
speed of the stirrer. Where Re = idem, Fr was clearly not idem, but this has
no influence on Ne: g is therefore irrelevant!

b) Mixing time characteristic of a stirrer

For our purposes, the mixing time, 6, is the time required to mix two fluids of simi-
lar density and viscosity until they are molecularly homogeneous. (See [22] for prac-
tical determination of this quantity). In this case, the relevance list is as follows:

{6;d; p, v, D;n}

where D[L* T"] is the diffusivity of one fluid into the other.

Dimensional analysis of this example is associated by a reduction of the rank of
the matrix, because the base dimension of mass is only contained in the density, p.
From this it does not follow that the density wouldn’t be relevant here, but that it is
already fully considered in the kinematic viscosity v, which is defined by v = u/p.
Therefore

{n0; Re =nd*/v; Sc=v/D} resp. nO=f(Re, Sc) (11.4)
represents the appropriate pi-space here. The corresponding pi-relationship, the

mixing time characteristic of the blade stirrer for the geometric conditions given in
Fig. 27, is shown in Fig. 26.
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Fig. 26 Mixing time characteristic of a blade stirrer
For installation conditions see Fig. 27; from [57].
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The measured values demonstrate, in analogy to point 4 where power characteri-
stic was discussed, that D, and consequently the Schmidt number, are not as rele-
vant as assumed. (In the same system of materials - a mixture of water and cane
syrup — at almost the same D value, the Schmidt number is varied by the kinematic
viscosity, v, over many orders of magnitude.)

c) Optimum conditions for the homogenization of liquid mixtures
If the power and mixing time characteristics are known for a series of common stir-
rer types under favorable installation conditions, see [57], one can go on to consider
the optimum operating conditions by asking the question: Which type of stirrer ope-
rates within the desired mixing time 0 with the lowest power consumption and
hence the minimum mixing work (P6 = min) in a given system of materials and a
given vessel (vessel diameter D)?

In answering this question, we need not (at least for the moment) consider the
diameter of the stirrer or its speed; the relevance list is as follows:

{P, 0; D; v, p} (11.5)

When the dimensional matrix has been assembled it becomes:

2
I1, =PD D3 _PDp D3p und II, = 6_}/ = GTM (11.6)
pVv w D" D

p D v P 0
M 1 0 0 1 0
L -3 1 2
T 0 0 -1 -3 1
M 1 0 0 1
L+3M+2T 0 1 0 -1
-T 0 0 1 3 -1

These two pi-numbers can be formed from the known numerical values of Ne, n6
and Re with the help of D/d. The following interrelations exist:

I, =NeRe’D/d and II,=n6 Re (D/d)™ (11.7)

Fig. 27 shows this relationship for those stirrer types exhibiting the lowest IT; values
within a specific range of the dimensionless number II,, i.e. the stirrers requiring
the least power in this range.

This graph is extremely easy to use. The physical properties of the material
system, the diameter of the vessel (D) and the desired mixing time (0) are all known
and this is enough to generate the dimensionless number IT,. The curve I1; = f{IL,)
in Fig. 27 then provides the following information:
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Fig. 27 Working sheet for the determination of optimum
working conditions for the homogenization of liquid mixtures in
mixing vessels; from [57].

1 The stirrer type and baffling conditions can be read off the abscissa. The diam-
eter of the stirrer can be determined from data on stirrer geometry in the
sketch.

2 The numerical value of IT; can be read off at the intersection of the IT, value
with the curve. The power consumption, P, can then be calculated from this.

3 The numerical value of Re can be read off the Re scale at the same intersec-
tion. This, in turn, makes it possible to determine the stirrer speed.

Example 22: Process characteristics of a self-aspirating hollow stirrer and the deter-
mination of its optimum process conditions

As a result of their form, hollow stirrers utilize the suction generated behind their
edges (Bernoulli effect) to suck in gas from the head space above the liquid. As “rota-
ting ejectors”, they are stirrers and gas pumps in one and are therefore particularly
suitable for laboratory use (especially in high pressure autoclaves) because they
achieve intensive gas/liquid contacting via internal gas recycling without a separate
gas pump [58/1]. A particularly effective type of this stirrer — the pipe stirrer — is
depicted in Fig. 28.
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In operating a hollow stirrer, both target quanti- )
ties — gas throughput q and the stirrer power P —
adapt themselves simultaneously. Both target quan-
tities depend on the following parameters:

Geometry: Stirrer diameter d
Physical properties: ~ density p
viscosity w
Process parameters: stirrer speed n
gravitational constant g

Thus we obtain two separate relevance lists:

S
{gd, p,u;n, g} (11.8) CD‘T'@

{P;d,p,u;n, g} (11.9)  Fig.28 Sketch of the pipe stirrer

p d n q u g

M 1 0 0 0 1

L -3 1 0 3 -1 1

T 0 -1 -1 -1 -2

M 1 0 1 0

3M+L 1 0 2 1

-T 0 1 1 1 22

IT

=% =q n EMLHER{I m,=-8 =fr (11.10)

nd’ 2
I1, is named the gas throughput number Q, I1, is the inverse Reynolds number and
I13 is the inverse Froude number. The gas throughput characteristics of a hollow
stirrer then reads:

2 2
o =7, (252 50) Q= (Re ) (1.1

The power characteristics — obtained from the relevance list (11.9) by a similar
dimensional matrix — containing P instead of q — leads to:

2 2
P _(ndpnd _
- — (P22 = Ne=f,(Re,Fr) (11.12)
The pi-number containing P is termed the Newton number.

Model experiments with another type of hollow stirrer (3-edged stirrer, see sketch in
Fig. 30) were performed in water/air under defined experimental conditions and the
scale factor u = dy/dy was changed in the range of w=1:2:3:4: 5. The results
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Fig. 29 Gas throughput characteristic of a 3-edged stirrer; from [58/1].

demonstrate that the Reynolds number is irrelevant in the turbulent flow range
(Re > 10*) and the process is exclusively governed by the Froude number. Both pro-
cess characteristics can therefore be represented as

Q = f1 (Fr) and Ne = f, (Fr)

see Fig. 29 and 30.

These results impressively demonstrate to which extent information can be com-
pressed by dimensional analysis. — These process characteristics present a reliable
basis for the scale-up of this hollow stirrer under the given geometric conditions.
But they also allow a further optimization of this process as will be demonstrated by
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Fig. 30 Power characteristic of a 3-edged stirrer. For the legend see Fig. 29; from [58/1].
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the following additional treatment. A question must be answered with respect to the
process conditions under which this stirrer will achieve a given gas throughput with
the minimum power, P/q = min! This answer can be easily found by combining the
above characteristics in Fig. 29 and 30 in such a way that a dimensionless expression
for P/q is produced. This is the pi-number combination

NeFr = o dos = f1(Fr) (11.13)

This new pi-number is, as are its constituents, also a function of the Froude number.
This dependency is represented by Fig. 31. It can be seen that two sections exist:

Fr<10: Ne Fr/Q = const — P/q < d.
Here, P/q increases in direct proportion to scale (d).
Fr<10:Ne Fr/Q o< Fr — P/q o< d%

In this range, the hollow stirrer is still less effective, because the power per unit gas
throughput increases with the square of the scale (d?).

Under these circumstances, which can be described by “small is beautiful”, it can
be clearly shown that hollow stirrers are not suitable for sucking in large amounts of
gas on a full-scale. In this case, it is advisable to decouple gas throughput and the
power consumption by using a high speed stirrer (e.g. turbine stirrer) and supply it
with gas from underneath it via a blower.

In transport limited reactions in gas/liquid systems, mass transfer is usually
dimensioned according to P/V = idem and v = q/S = idem, see section 10.4.1. In
scaling up, these conditions also speak in favor of decoupling the gas supply and
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Fig. 31 Dimensionless interdependence of P/q and d under different process conditions (Fr)



11 Optimization of Process Conditions by Combining Process Characteristics

stirrer speed, because processes with two mutually independent process parameters
can be more easily optimized than those having only one process parameter.

However, there are many chemical reactions in the G/L system in which the gas
throughput plays no role because micro-kinetics is rate determining. In such cases,
the hollow stirrers, due to their dual role as stirrers and gas conveyers, play a prime
role, particularly in high pressure chemical engineering.

Example 23: Optimization of stirrers for a maximum removal of reaction heat

In the optimization of stirrers for an optimal heat transfer, it may not be forgotten
that the removable heat flow, Q [kW], increases according to the heat transfer charac-
teristic with Re*/? o< n®/?, whereas the thereby associated stirrer power (stirring heat)
increases substantially overproportionally according to the power characteristic of
the stirrer with P [kW] o< n®. From this it follows that there is an optimum stirrer
speed at which a maximum of process heat, e.g. chemical reaction heat, R, can be
removed:

R=Q-P (11.14)

:
N

A\

10' \
anchor stirrer, tank of H/D = 1

54— P D=20m;Vv=586m3 \

d=1.8m (D/d=1.10)

p = 1.000 kg/m3

1 =50 kg/(m s)

k=2 W/(mK)

2 Cp = 2.000 J/(kg K)
/ A=14m2

AT =250C
o u=n | | |
10 P 30 40 50 60 70
Nopt n[min-1]

Fig. 32 Graphical representation of the courses of R=Q — P as
a function of the stirrer speed for the example given in the plot;
from [59]

101



102
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Figure 32 illustrates this situation with a concrete example. It shows that the opti-
mum range with respect to the stirrer speed is very flat, 90% of the maximum value

being removed in the range nop = 20 min™" + 60 %.
In the prediction of optimal conditions (Nypt, Rmax), Pawlowski and Zlokarnik [59]

applied the following procedure:
With Q =h A AT (in the laminar flow range the overall heat transfer coefficient
U = h), the following expression follows from the relationship R=Q - P
R/V=hAAT/V-P/V (11.15)
Formulation of this expression in terms of dimensional analysis yields:

IT, = Nu - (D/d) IT; " Re® Ne (11.16)

where IT; and IT, stand for

2 2 2
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Fig. 33 Work-sheet for determining optimal operating condi-
tions for heat removal in a vessel with an anchor stirrer with two
different wall clearances (D/d = 1.00 — without wiper blades —
and D/d = 1.10) in the laminar flow range (Re < 100); from [59]
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If the known functions Nu= Nu (Re, Pr) and Ne = Ne (Re) are incorporated into
the relationship (11.16), conditions are obtained for the sought optimum by diffe-
rentiating this expression with respect to Re and setting its differential to zero.

The determination of these conditions for the optimum is made easier by the
work-sheet in Fig. 33. It applies for two anchor stirrers with different wall clearances
[D/d =1.00 (no wiper blades!) and D/d = 1.10] in the laminar flow range (Re < 100).

The geometric parameters A/DH and V/DA for tanks with dished bottoms, which
are necessary for utilizing the work-sheet, can be taken from the auxiliary diagram
in inset (a) of Fig. 33 as functions of the aspect ratio H/D. Since the optimal stirrer
speed determined can, in practice, only seldomly be realized, the Re and thereby the
rotation speed range is given in the auxiliary diagram in inset (b) of Fig. 33. Within
this range 90% of (R/V)qp (according to expression (11.15)) are attained.

Application example for Fig. 33:

The conditions used were those from which Fig. 32 is based. With Pr = 5 x 10*
and the abscissa value IT; Pr (H/D)™" = 2.82 x 10%, the optimum conditions Re,p
Pr'/? = 4.8 x 10’ and the ordinate value (IT,)op = 8 x 10" follow from the work-sheet,
producing ng, = 20 min~! and Ry = (R/V)opt V = 28.5 kW (see the optimum opera-
ting point in Fig. 32). At this stirrer speed the stirrer power amounts to ca. 6 kW,
which is ca. 20% with respect to the maximum removal of reaction heat. From the
auxiliary diagram in inset (b), it can be inferred that the rotation speed interval, in
which at least 90% of the maximum achievable value (Roge, = 25.6 kW) could be
removed, lies between 8 and 32 min".

If more than the determined amount R, ,, has to be removed, an anchor stirrer
with D/d = 1.1 can be replaced with one with D/d = 1.0 (no wiper blades). Conse-
quently, at a slightly lower optimum stirrer speed (n= 17 min™"), the removal of
Rinax = 60 kW is possible.

Another option for raising Ry, this being a simpler option from a technical
point of view, involves choosing a tank with a higher aspect ratio. For H/D = 2 and
the same volume (V = 5.86 m®) as above, a tank diameter D = 1.57 m is obtained.
(For the given values of V and H/D the sought D is found with the assistance of the
auxiliary diagram (a), if the H/D associated product (A/DH)(V/DA)(H/D) = V/D* is
generated. Therefore, in this case, V/D3 = 1.52. With the new abscissa value I1; Pr
(H/D)f1 = 1.7 x 108, it follows that the quantity Ry, = 39 kW at Nope = 19.7 min .
For H/D =3 (D = 1.37 m, d = 1.25 m), Ryax = 45.5 kW at g, = 20.6 min~' can be
removed. In our example, Ry, increases with (H/D)l/ 2 The calculated R,,., value
of 60 kW for an anchor stirrer with D/d = 1.00 is first achieved for H/D = 6.

In the range Re > 200 (turbulent range with respect to heat transfer), heat flux
merely increases according to Ry,.x o< (H/ D)l/ 3. An effective increase of Ry, is only
possible here by increasing AT or by using stirrers with wiper blades [22].
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12
Selected Examples of the Dimensional-analytical Treatment
of Processes in the Field of Mechanical Unit Operations

Introductory remark
Fluid mechanics and mixing operations in various types of equipment, agglomera-
tion as well as disintegration and mechanical separation processes, just to mention
a few, are described by parameters, the dimensions of which only consist of three
base dimensions: Mass, Length and Time. An isothermal process is assumed: The
physical properties of the material system under consideration are related to a con-
stant process temperature. The process relationships obtained in this way are there-
fore valid for any constant, random process temperature to which the numerical val-
ues of the physical properties are related. This holds true as long as there is no
departure from the scope of the validity of the respective process characteristic veri-
fied by the tests.

The scale-up can only present problems when model substances are not available.
(Prime example: Drag resistance of a ship’s hull and Froude’s approach of this prob-
lem, Example 9).

Example 24: Power consumption in a gassed liquid. Design data for stirrers and
model experiments for scaling up

Gas/liquid contacting is frequently encountered in chemical reaction and bioprocess
engineering. For reactions in gas/liquid systems (oxidation, hydrogenation, chlori-
nation, and so on) and aerobic fermentation processes (including biological waste
water treatment), the gaseous reaction partner must first be dissolved in the liquid.
In order to increase its absorption rate, the gas must be dispersed into fine bubbles
in the liquid. A fast rotating stirrer (e.g. a turbine stirrer), to which the gas is sup-
plied from below, is normally used for this purpose (see the sketch in Fig. 34).

For a given geometry of the set-up, the relevance list for this problem contains the
power consumption, P, as the target quantity, the stirrer diameter, d, as the charac-
teristic length and a number of physical properties of the liquid and the gas (the
latter are marked with an apostrophe): Densities, p and p’, kinematic viscosities, v
and V/, surface tension, o, and an unknown number of still unknown physical pro-
perties, S;, which describe the coalescence behaviour of finely dispersed gas bubbles
and by this, indirectly, their hold-up in the liquid. The process parameters are the
stirrer speed, n, and the gas throughput, q, which can be adjusted independently, as

105



106

12 Selected Examples of the Dimensional-analytical Treatment

well as the gravitational acceleration, g, which is implicitly relevant because of the
large density difference. (We should actually have written gAp here — see Section 5.1
- but, since Ap = p - p’ = p, the dimensionless number would contain gAp/p = gp/p
= g.) The relevance list is therefore:

{P;d;p,v,0,S;,p’,v;n,q, g} (12.1)

In this case, the relevance list contains at least eleven variables — more than twice
the number required for the power consumption in the homogeneous liquid system
(Example 21, eq. (11.1)).

Before employing the dimensional analysis for generation of the dimensionless
numbers, it is worthwhile anticipating obvious numbers such as p’/p and Vv’/v. S; are
physical properties of unknown dimension and number. Therefore they cannot be
included in the dimensional matrix. However, this is no problem since, with the known
relevant physical properties p, v and o, one will always be able to transform S; to the
dimensionless numbers S;. The above relevance list can therefore be reduced to

{P;d; p,v,0;n,q,g} foranticipated p’/p,V'/V, S; (12.2)

Here, the simplest dimensional matrix is also the best one because it leads directly
to the common, named dimensionless numbers.

p d n P v o q g

M 1 0 0 1 0 1 0 0
L -3 1 0 2 2 0 1
T 0 -1 -3 -1 -2 -1 -2
M 1 0 1 1 0
L+3M 1 0 5 2 3 1
-T 0 1 3 1 2 1 2

IT, = P/(p d° n®) =Ne (Ne - Newton number)

I, = v/(d* n) =Re' (Re - Reynolds number)

I; =o/(p d*> n? =We ™" (We — Weber number)

I, =q/(d* n) =Q (Q - throughput number)

Il5 = g/(d n% =Fr' (Fr - Froude number)

Taking the anticipated numbers into account, it follows that:

Ne=f(Re, We, Q, Fr, p’/p, V'/V, S;) (12.3)
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However, we can now see that the important process parameter, the stirrer speed, n, is
present in all numbers: Their numerical value is changed with each change in speed.
This is not advantageous for the planning and evaluation of experiments. Our aim is
therefore to transform Re and We, which contain the physical properties v and o, to
dimensionless material numbers through combination with other numbers.

Firstly, we form two combinations of the dimensionless numbers which do not

contain n:
3

Re?/Fr= 89 = Ga (Galilei number) (12.4)
v
dZ

We/Fr =P8 (12.5)

Then we combine these two new numbers in such a way as to eliminate d:

{(Re?/Fr)*/* (Fr/We)} = (Re* Fr)/®> We ™' = — Ty = o (12.6)
(P'v'g)

By this means it is possible to transform the We number into a pure material num-

ber, o*, the numerical value of which is dependent only on the material system. In

contrast, the only advantage of the Ga number over Re is that it does not contain the

stirrer speed. Let us stay with Re and base our considerations on the following pi-

space:

Ne=f(Q, Fr, Re; 0", p’/p, V'/V, S;) (12.7)

In this case, the pi-space consists of a target number (Ne), three process numbers
(Q, Fr, Re) and a series of pure material numbers (o, p’/p, V'/v, S}).

The first question, we must ask, is: Are laboratory tests performed in one single
piece of laboratory equipment — i.e. on one single scale — capable of providing relia-
ble information on the decisive process number (or combination of numbers)? Al-
though we can change Fr by means of the stirrer speed, Q by means of the gas
throughput and Re (or Ga) by means of the liquid viscosity independent of each
other, we must accept the fact that a change in viscosity will alter not only Re but
also the numerical values of the material numbers, 6", v'/v, and, very probably, S;.

In contrast to the gas density, p” (hydrogen is by a factor of 16 lighter than air, its
bubbles therefore have a stronger buoyancy and will escape the liquid quicker!), an
influence of the gas viscosity, v/, on the stirrer power is not to be expected (v'/v =
irrelevant). Preliminary tests with methanol/water mixtures showed [60] that o does
not influence the stirrer power either, therefore 0" is irrelevant. Furthermore, mea-
surements revealed that the coalescence behaviour of the material system is not
affected if aqueous glycerol or cane syrup mixtures are used to increase viscosity.
This means that the influence of S; on Ne cannot be significant. These results alone
give us the right to perform model experiments in one single piece of apparatus in
order to elaborate the process relationship. The following pi-space is then used as
the basis
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Fig. 34 Power characteristic of a turbine stirrer under
industrially interesting flow conditions (Re > 10%
Fr>0.65; p’/p = 1.20 x 107 ); from [60]
Ne =f(Q, Fr, Re) (12.8)

and only one gas (air) is used, p’/p = 1.20 x 10~ = const.

The results of these model experiments are described in detail in [60]. For our
consideration based on the theory of similarity, it is sufficient to present only the
main result here. This states that, in the industrially interesting range (Re > 10* und
Fr 2 0.65), Ne is only dependent on Q; see Fig. 34.

Knowledge of this power characteristic, the analytical expression for which is

Ne= 1.5+ (0.5 Q*°”° + 1600 Q)™ Re >10* Fr>0.65; p’/p = 1.20 x 107> (12.9)

can be used to reliably design a stirrer drive for conducting reactions in the gas/lig-
uid system (e.g. oxidation with O, or air, fermentation etc.) as long as the physical,
geometric and process-related (Re and Fr range) boundary conditions comply with
those of the model measurement.

At this point we should ask ourselves how we would perform the scale-up if we
did not know anything about the above functional relationship! Let us therefore try
to determine the stirrer power of a given stirrer for a specified, large fermenter (e.g.,
V =100 m>; H/D = 3; D = 3.5 m) on the basis of model measurements where the
physical properties of the system and the gas throughput of interest are known.
With a freely selectable stirrer speed, we can presuppose that, apart from the nume-
rical value of Nu, the numerical values of all other dimensionless numbers are
known. (Of course we do not know anything about the coalescence phenomena —
this corresponding to the state of knowledge existing about 30 years ago.)

Our considerations are therefore based on the following relationship:

Ne=f(Q, Fr,Re; 6", p’/p, V'/) (12.10)
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Naturally we will perform the model experiments (e.g., on a scale of u=1:10,i.e. V=
0.1 m* — D = 0.35 m) with the industrially interesting material system; in this way,
at least, the numerical values of the three material numbers remain constant. Howe-
ver, this means that Re (resp. Ga) and Fr can no longer be adjusted independently of
each other because only the rotational speed of the stirrer is available for their reali-
zation.

Therefore, we can only realize partial similarity in the model: We can either set Q
and Re = idem or Q and Fr = idem. We will opt for the second case (Q and Fr =
idem) because we expect g and hence Fr to be more important then v and hence Re
in an aeration process.

From the scale-up rules

Fr o< n”*d=idem — ny =nru'/?  and (12.11)
Re o< nd” =idem — ny =nrp® (U= dy/dy) (12.12)

it follows that, in order to maintain Fr = idem, the stirrer speed in the model is only
faster by a factor of u'/? than in the full-scale application. However, the condition Re
= idem requires a stirring rate which is faster by a factor of u”. This means that if we
carry out the model measurement at Fr = idem, we are running the risk of the flow
condition shifting substantially towards the laminar region with respect to Re: That
is to say, if we perform the model experiments, which are characterized with Fr =
idem, ny = nrp'/? and dy = dr ™', the following is valid for the Re number under
these conditions:

ReM o< ny dy = npu'/? (dru™) e« Rep /2 (12.13)

In our example (u = 1:10), the Re number would only be approximately 1/30th of
the value obtained in the full-scale application! In view of this fact, the following
approach would seem to be sensible, see Fig. 35:

1. The first measurement point is determined at Rey; and Fr, Q = idem (filled
circle in the figure).

2. In the course of further measurements at Fr, Q = idem, the viscosity of the
experimental liquid is reduced stepwise to raise Re towards Rey; compare the
three hollow circles. The smaller the selected model-scale, the greater is the
danger of this approach also finally leading to false extrapolation to Ne(Rer):
We do not know that Re is no longer relevant at Re > 10!

3. Since the material numbers are changed by the approach described in point 2,
we will perform another model experiment on a larger scale at Rey,, just to be
on the safe side, see the filled triangle. Although we may confirm preceding
measurement results, this does not reduce the risk of extrapolation to Rery, as
shown by comparison with the actual state of affairs (curve in Fig. 34).

This example is not intended as a deterrent against measurements under the condi-
tions of partial similarity in general since these — when performed with care — can
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Fig. 35 Presentation of the Ne(Re) curve for Q, Fr = idem kept
constant. lllustration of model experiments. For explanation see
text.

frequently provide valuable information. The purpose of this consideration is merely
to show that there can be no substitute for complete information about a technical
matter in the pertinent pi-space.

Example 25: Scale-up of mixers for mixing of solids

In the final state, the mixing of solids (e.g., powders) can only lead to a stochastically
homogeneous mixture. We can therefore use the theory of random processes to
describe this mixing operation. In the present example from [61] we will concentrate
on a mixing device in which the position of the particles is adequately given by the x
coordinate. Furthermore, we will assume that the mixing operation can be described
as a stochastic process without “after-effects”. This means that only the actual condi-
tion is important and not its history. The temporal course of this so-called Markov
process can be described with the 2nd Kolmogorov equation. In the case of a mixing
process without selective convectional flows (requirement: Ap = 0 and Ad,, = 0; see
[62]), the solution of Fick’s diffusion equation gives a cosine function for the local
concentration distribution, the amplitude of which decreases exponentially with the
dimensionless time 0 D.g/ (> L?), see Fig. 36. (The variation coefficient or the rela-
tive variation, v, is defined as the standard deviation divided by the mean value:
v=Vs /X.)

Let us now consider this process using dimensional analysis. We have the follo-
wing parameters:

Target quantity: v variation coefficient as a measure for the mixing

quality
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Geometric parameters ~ D,L  diameter and length of the drum

d diameter of the mixing device

dp mean particle diameter

¢ degree of fill of the drum

Deg, effective axial dispersion coefficient
p density of the particles

n rotational speed of the mixer

0 mixing time

gp solid gravity

Material properties

Process parameters

The relevance list contains 11 parameters
{w D, L,d, dp, ¢; Des, p; 1, 0, gp} (12.14)

After the exclusion of the dimensionless quantities v and ¢ and the obvious geome-
tric pi-numbers L/D, d/D and d,/D, the following 3 pi-numbers are obtained:

p D n 0 D.g 8p
M 1 0 0 0 0 1
L -3 1 0 0 2 -2
T 0 0 -1 1 -1 -2
M 1 0 0 1
L+3M 0 1 0 0 2 1
-T 0 1 -1 1 2

On Mixing number

Deg/D*n =Bo' Bo - Bodenstein number
gp/pDn*=Fr'  Fr - Froude number

The complete pi-set reads:
{v,1/D, d/D, dy,/D, ¢, On, Bo, Fr} (12.15)

To obtain the rotational speed of the drum in only one number (the process number
Fr), we combine the other two accordingly with Fr and get: 0 Dg/D? und g D*/ D2

The experimental results presented in Fig. 36 were obtained in one single model
(D = 0.19 m) with different lengths (L/D = 1; 1.5; 2; 2.5). The geometric and material
numbers d/D, d,/D, ¢ and g D’/ D%y remained unchanged as did Fr because of the
constant rotational speed of the drum n= 50 min™". As a result, the measurements
can only be depicted in the pi-space

{v, 0D/ D?, L/D} (12.16)

whereby d/D, d,,/D, ¢, g D’/ Dz, Fr = idem.
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Fig. 36 Mixing quality as a function of the dimensionless
mixing time for different |/D ratios.Copper and nickel particles of
O =300 — 400 um, fill degree of the drum ¢ = 35%, Froude
number of the drum Fr =0.019. From [61].

The result of these measurements is
v=f(0Deg/L?) (12.17)

In other words, the mixing time (at Fr = const), required to attain a certain mixing
quality, increases with the square of the drum length L. In order to reduce the
mixing time, the component to be mixed would have to be added in the middle of
the drum or simultaneously at several positions.

Fig. 36 shows experimental results in a single logarithmic graph. They are compared
with the theoretical prediction of a stochastic Markoff’s process. For details see [61].

Entrop [63] reported the process characteristics of the Nauta® mixer. The Nauta®
mixer utilizes an orbiting action of a helical screw rotating on its own axis to carry
material upward, while revolving about the centerline of the cone-shaped shell near
the wall for top-to-bottom circulation., see the sketch in Fig. 37. Nauta® mixers of
different sizes are not build geometrically similar to each other: The diameter of the
helical screw and its pitch are kept equal.

Mixing time characteristic of the Nauta® mixer

Relevance list: In case of a pure convective mixing and Ap = 0 as well as Ad, = 0,
the particle size d;, is of no influence.

Target quantity: 0 mixing time

Geometric parameters d, 1 diameter and length of the helical screw

Material properties p solid density
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Process parameters n, n, rotational speed of the helical screw and of its
beam
g gravitational acceleration
{6;d,1; p; n, ny, g} (12.18)

The base dimension M is contained only in the density p. Therefore, this quantity
has to be deleted from the relevance list. 6 — 2 = 4 numbers will be produced. The
pi-set reads:

{n0,1/d, n,/n, Fr=n’d/g} (12.19)

The measurements were executed under following conditions: Mixer volume V =
0.05-10 m?; diameter of the helical screw d = 0.15-0.63 m; rotational speed of the
helical screw n = 30-120 min™"; n,/n = 20-70; Fr = 0.24—4. Material systems: sand
and fine-grained limestone.

The mixing time characteristic of the Nauta® mixer is given in Fig. 37. It can be
shown that the type of material has a neglegible influence (proof that the density p
is irrelevant indeed!). Likewise, the number n,/n has, within the used range, no
effect. In contrast, the influence of the parameter 1/d is very pronounced. The pro-
cess equation reads:

revolving arm drive
{ helical screw drive

no

103

® i/d

102 5 z 0 5 { outlet

Fig. 37 Mixing time characteristic of the Nauta® mixer
and its drawing; from [63].
(Sign legend is missing in the original publication.)
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Fig. 38 Mixing time characteristic of a plow-share mixer.
Material: Cooper shot and corn shoot. D =0.2 and 0.4 m;
degree of fill ¢ = 0.35 and 0.4-0.65; from [64].

(Sign legend is missing in the original publication.)

n0=13 (I/d)"*** n,/n=20-70 Fr=024-4 (12.20)
This means, in practice, that the mixing time is lengthened by the square of the

length (compare to the eq. (12.17)).
For the power characteristic of the Nauta® mixer has been found [63]:

Ne Fr=— dlj e (1/d)*2 (12.21)

By multiplication of the process characteristics (12.20) and (12.21), the expression
for the mixing work, W, can be obtained, this being necessary for a given mixing

quality:
W =P 0o d* 1> pg (12.22)

From the energetic point of view, it is therefore advantageous to construct mixers of
low heights and to provide them with helical screws of large diameters.

In the study of plow-share mixers (centrifugal mixers) a different data processing
method has been used [64]. From the concentration distribution of the material tra-
velling through the drum, an effective Bodenstein number, Bo = v L/M (v — travel-
ling velocity of the material to be equilized; L — drum length; M — mixing coefficient,
comparable to the dispersion coefficient D ), is determined and M calculated
from it. With these M values a different Bodenstein number, Bo = n D?/M, is now
formed and plotted against the Froude number Fr = n® D/g. Fig. 38 shows that for
Fr < 0.038 the Bodenstein numbers remain constant but afterwards they decrease
proportionally to Fr’. At this border value of the Froude number, the flow behavior
changed completely.

According to Miiller [64], the manufacturers of mixing equipment comply with
the scale-up rule: u= const (u= nnd — tip speed of the mixing device). From this, the
following applies for the mixing time 0:
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Fr<0.038:0= D/u (L/D)? (12.23)
Fr>0.038:0= D*/u’ (L/D)? (12.24)

At the same standardized L/D value and an equal tip speed, u, for Fr < 0.038 mixing
time increases proportionally to the drum diameter, D. For Fr > 0.038, mixing time
increases proportionally to D*. In this range, however, even a minute change in the
rotational speed of the mixing device exerts a strong influence on the mixing time.

Example 26: Conveying characteristics of single-screw machines

Screw machines are important appliances used for the production (mass polymer-
ization) and processing (mixing, extrusion) of plastics. They play also an important
role in the food industry (chocolate, pasta). A distinction is made between single-
screw and multiple-screw machines (e.g., self-wiping twin-screws) and between con-
veying, mixing and kneading screw machines. The conveying characteristics are rep-
resented for all types of screw machines in the same pi-space. In the following, they
will be given and discussed for single-screw machines.

The conveying properties of a single-screw machine of given screw geometry are
represented in the creeping range (Re < 100) of Newtonian liquids by following cha-
racteristics [5, 65]:

Apd

Pressure characteristic: EuRed/L = TE e f1 (Q) (12.25)
Axial force characteristic: NeF Red/L= ﬁ: £ (Q) (12.26)
Power characteristic: NeF Red/L= ﬁ= f5(Q) (12.27)

Q represents the flow rate number Q = q/(nd?). These three characteristics are illus-
trated in Fig. 39 for a screw of given geometry. They are linear dependences which
are described by analytical expressions in the form:

%Y + %Q -1 (12.28)
where y; and q; are the respective axis intercepts.

In scrutinizing the conveying characteristics in Fig. 39, one discovers three typical
ranges in which the screw machine can function. They are outlined in Fig. 40. In
this representation, the throughput number Q is standardized by the intercept A;.
In other words, this is the numerical value of Q where the screw machine is con-
veying without pressure formation. With this “flow-kinematic” parameter, A = Q/
Ay, the state of flow of a screw machine can be outlined more distinctly.

The two intercepts A; and A, are called profile parameters of a screw machine
because their numerical values depend on the screw geometry (“screw profile”), for
details see [5, 65].
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~2x103

|
T

—4x103

Fig. 39 Conveying characteristics of a single-screw machine of
given screw geometry, taken from [5].

From the three ranges of the conveying characteristics, only the middle one 0 < A
<1 (the so-called active conveying range of the screw machine) can be implemented
by suitable throttling and/or a change in the rotational speed alone, without an addi-
tional conveying device. At A = 0 the screw machine is fully choked and the highest
pressure builds up. At A =1 the highest throughput is achieved without a pressure
build up.

In order to implement the other two ranges, it is necessary to couple the screw
machine with an additional conveying device (e.g., a positive displacement gear-type
rotary pump). If the pump transports the liquid in the same direction as the screw,
the range A > 1 results. Here, the conveying action of the screw machine is “run
over” by the conveying action of the pump. At A < 0, the pump pushes the liquid
against the conveying sense of the screw. The screw machine is then only a mixing
device.
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regime regime regime

Fig. 40 Subdivision of the typical working ranges of a screw
machine by the “flow-kinematic” parameter A.

It has been already pointed out that the conveying properties of a single-screw
machine can be described by linear dependencies of the type shown in eq. (12.28),
this only being valid in the creeping range (Re < 100) of Newtonian liquids. The
proof for this is given in Fig. 41. It represents the pressure characteristics of a sin-
gle-screw machine of a given screw geometry in dependence of the Reynolds num-
bers. It can be seen that at Re > 240 this linearity does not exist any more.

In case of a non-Newtonian liquid, the pressure characteristic is depicted by the
pi-set:

-1 x 1071 —-5x 1072

Fig. 41 Dependence of the pressure characteristics of a single-
screw machine on the state of flow (Re); from [5].
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{Ap d/(H n L)! Qr 1’1@, Hrheol} (1229)

In this type of liquid, in which the viscosity curve corresponds to that shown in Fig.
18, the pi-space is given by

{Apd/(n~nl), Q ny.} (12.30)

Fig. 42 shows this relationship for such a liquid (lubricant for steam engines with
ca. 7 % Al stearate, .. = 9.7 Pa s, §.. = 0.205 s7'). This was established with two
differently sized (d = 60 and 90 mm) single-screw machines with the same profile
geometry using two rotational speeds (n= 1.65 and 25 min™). Independent of the
screw diameter, the curves coincide for ny..= const. The higher the rotational speed,
the higher is the shear stress; the straight line (a), which is also valid for Newtonian
liquids, adjusts as the limit case (W= |..).

n=1.65min-1
NYe0=564x 1073

n=25.0 min-1
N0 =853 x 1072

nd
o~

4x10

Fig. 42 Pressure characteristic of a screw machine of given
screw geometry for a non-Newtonian liquid (see text). Full signs:
d =60 mm, hollow signs: d = 90 mm; for .. and .. see Fig. 18;
from [5].
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When conducting extremely exothermic reactions in a screw machine as chemical
reactor, operating conditions at which a minimum of power is dissipated in the
liquid (£ lowest thermal load of the liquid throughput) are of interest. The dissipa-
ted power, H, is obtained from the difference between the power, P, of the motor
drive and that of the pump, qAp:

H=P-qAp (12.31)

A dimensionless formulation of this relationship is possible using the conveying
characteristics of the screw machine in question, see Fig. 39. In the active conveying
range, 0 < A = 1, the dissipation characteristic passes through a minimum in which
the lowest power dissipation H occurs for the given values of q and Ap, this corre-
sponding to H/q = min.

In Sect. 8.7 it was pointed out that in even using the same non-Newtonian liquid,
complete similarity of the model and the full-scale counterpart can only be attained
if there is a creeping, steady-state and isothermal flow condition. Scale-up is then
carried out as follows:

The non-Newtonian liquid and the parameters qrand Apyof the industrial facility
are given. We are searching for the variable d and the rotational speed n of the tech-
nical device, whereby P = min is required. Corresponding to the above pi-set for
non-Newtonian liquids, it follows that:

L/d, n, Ap=idem — q/d% P/q=idem (12.32)

In the model screw machine, the dependences q(n) and P(q) are established and
depicted as P/q = fi(n) and q/d’® = fy(n). This situation also applies to the full-scale
appliance. The possibly existing minimum of P/q gives the optimum rotational
speed n,p, which is also valid for the technical device. The corresponding values
dopt and Py for the technical device are obtained from the values (q/d’),p and
(P/q)opt by setting q= qr. We have therefore solved the task.

A consequent dimensional-analytical treatment of the homogenization process,
residence time distribution and heat transfer behavior in single-screw machines was
performed by Pawlowski and was published in a sequence of scientific papers. A
summary of this work is printed as a monograph [65].

Example 27: Dimensional-analytical treatment of liquid atomization

Liquid atomization (liquid-in-gas-dispersion) is an important unit operation which
is employed in a variety of processes. They include: fuel atomization, spray drying,
the spraying of a lime suspension into combustion gases in power stations for SO,
removal, powder metallurgy (metal powder production), coating of surfaces by
spraying, and so on.

In all these tasks the achievable (as narrow as possible) droplet size distribution
represents the most important target quantity. It is often described merely by the
mean droplet size, the so-called “Sauter mean diameter” ds; [67], which is defined as
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the sum of all droplet volumes divided by their surfaces. Mechanisms of droplet
formation are:

1. Liquid column formed by a pressure nozzle is inherently unstable. The brea-
kup of the laminar column occurs by a symmetrical oscillation, a sinusoidal
oscillation and, finally, atomization.

2. Liquid sheet formation by an appropriate nozzle is followed by rim disinte-
gration, aerodynamic wave disintegration and turbulent breakup.

3. Liquid atomization by a gas stream.

4. Liquid atomization by centrifugal acceleration.

For all of these operations process equations exist; some of them will be repre-
sented in the following.

As discharge velocity at the nozzle outlet increases, the following states appear in
succession: dripping, laminar jet breakup, wave disintegration and atomization.
These states of flow are described in a pi-space {Re, Fr, We,}, whereby We, = p v*
d,/o represents the Weber number, formed by the droplet diameter, d,,. To eliminate
the flow velocity, v, these numbers are combined to give

&
Bond number Bd, = % = ng E and (12.33)
1/2
Ohnesorge number Oh, = Wﬁ —= — 7 (12.34)
(cpdy)

The subscript p indicates that these pi-numbers are formed with the droplet diameter.
For a liquid, dripping from a tiny capillary with diameter, d, it follows (see Exam-

ple 2 and [2]):
d pg ) 3
2o 1.6(T) = 1.6Bd (12.35)

Broader tubes (Bd > 25) exert no influence of d. Then we obtain:
Bd, =pg d3/o=2.9-3.3 (12.36)

On the jet suface, waves are formed which, at wave lengths of A > nud; (d; — jet diame-
ter), grow rapidly. The fastest wave disturbance takes place at the optimum wave
length of

hopt/7td; = V2 + 6 Oh (12.37)

For a low liquid viscosity d/d; = 1.9 applies. If liquid output pulsates, uniformly
spaced droplets are obtained; here d/d; = 1. Another possibility to produce monosi-
zed droplets consists in using pneumatic extension nozzles [317].

With higher discharge velocities laminar jets are produced, which disintegrate to
droplets in a certain distance from the capillary. The transition from dripping to
liquid jet desintegration occurs at higher Weber numbers:
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We=p v’ d/o=8-10 12.38
p

At We < 8, gravitational acceleration also has to be considered, thereby the Bond
number has to be included into the process equation.

The working principle of hollow cone nozzles is that the liquid throuhgput is sub-
jected to rotation by a tangential inlet and is then further accelerated in the conical
housing towards the orifice; see the sketch in Fig. 43. A liquid film with a thickness,
0, is thereby produced, which, at the discharge from the orifice, spreads to a hollow
cone sheet and disitegrates to droplets.

At low discharge velocities and low film thicknesses, the sheet disintegration is
due to the oscillations caused by air motion. In this case, the film thickness has a
large impact on the droplet size. In contrast, it is insignificant whether a pure liquid
or a lime-water suspension (mass portion ¢ = 16-64 %) is treated, see Fig. 43.

The fitting line corresponds to the analytical expression for the wave disintegra-
tion of pure liquids by hollow cone nozzles:

1/6 1/3 1/3 1/5

d p 2r. p.vo
p.max __ L o i G
g = 1.13(pG> (vaz 6) <6 tgo() < O ) (12.39)

(r; — orifice radius; o — angle of the hollow conical liquid sheet produced)

This pi-equation, taken from [68], represents a physical correlation. It is absolutely
useless for scaling up purposes: To predict the target quantity d;, max knowledge of
another target quantity, namely the film thickness, 9, is also necessary!

By exceeding a certain discharge velocity, turbulence forces increase to such an
extent that film disruption takes place immediately at the orifice. Now, the droplet

2
dp max
4

10°4

57 (BLy176 ( 21 )15 (ge_!_ﬁ 115

)R (
PL \/2 3 3 tgoc
2 5 100 2
Fig. 43 Film disintegration by wave oscillation. Measurements
with hollow cone nozzles of different geometry and with lime-

water-suspensions. For an explanation of signs see the original
publication [68]. The fitted line is valid for pure liquids.
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5 T
We = P—E‘—\F? d DA
[}
.&FH____.—-F"'F
L] —F‘f_—_
E'ﬂ" —— ™
+ T | SE—
ON= o b thma0®
L : 02 2 5 10"

Fig. 44 Liquid film atomization by turbulent forces. For an
explanation of signs see the original publication [68].

size is independent of the film thickness. This state of atomization is described by
the critical Weber number. Measuring data obtained with hollow cone nozzles of
different geometry and pure liquids as well as lime-water-suspensions are represent-
ed in Fig. 44. We,, .,;; and the Ohnesorge number are formed by the largest stable
droplet diameter, d;, ;max. The pi-equation reads:

Wep, crie = 4.5 x 10* Ohy/® (12.40)

This equation, also taken from [68], is equally useless for scaling up purposes,
because the (unknown!) target quantity d,, .« appears in both dimensionless num-
bers. In the combination

Weyp, crit Ohf, =We/Re=v /o

a new pi-number is obtained which does not contain dy, ax:
Wep, it = 1.97 x 10* (v /o) 1> (12.40a)
This process equation can now serve for scaling up d, max-

Example 28: The hanging film phenomenon

In a countercurrent flow of liquid and gas in a vertical tube, at a critical gas velocity,
Vg, a situation arrises at which the liquid supply to the tube is interrupted and the
liquid film inside the wall is held at rest; see sketch, Fig. 45. Increasing the gas ve-
locity above vg causes the film attachment point to rise in the tube. Lowering gas
velocity below vg causes the liquid film to move down the tube. Most of the resear-
chers reported little or no difference between these two critical v values. However,
Wallis and Makkenchery [69] stated that, for small tube diameters (D = 6 mm) and
air-water mixtures, the velocities differed by a factor of about two. These researchers
found that the lower critical vg increased with pipe diameter, D, and was indepen-
dent of it for large values of D. For acrylic glass the final result was found to be:



12 Selected Examples of the Dimensional-analytical Treatment | 123

12, 1/2
Ku = Pcicm ~3,2 Bd=D (gép> > 40 (12.41)
(0 gAp)

To obtain a linear expression for the characteristic

lengths (D), the square root of the usual Bond num-

ber was used. Ku = (Fr 'We)'/* is the Kutateladze num-

ber. Physical properties of the liquid have no sub-
script, gAp = g(p - Pg)-

Russian researchers [70] have found that in glass

tubes the same Ku value is obtained at Bd > 6. This

|
}
|
discrepancy caused Eichhorn [71] to carry out a de- '
|
|
|
|

N~b

OO

/7
tailed dimensional-analytical examination. He first
discovered that the lower critical v¢ corresponded to a

critical film thickness and to a critical shear rate in

the phase boundary G/L. Therefore, there are three

parameters independent of each other, which could

be regarded as target quantities. However, vg can be

measured more accurately and more easily than the VG ><

others, therefore, it is accepted as the target quantity. C]
The contact angle, ©, between the liquid and the - D +—’

tube wall is viewed as an essential material parameter. |

With this quantity, the wettability of the tube wall

is taken into account. Therefore, the relevance list

Fig. 45 Schematic representa-
tion of the hanging film phe-
reads: nomenon (as sketched in [69])

{ve; D; pe, ps U, W, 0, ©; gAp} (12.42)

9 -3 =6 dimensionless numbers will be produced. Three of them are: pg/p, ug/u., ©.

With the remaining six x-quantities a dimensional matrix is formed {p, D, y| vg,
0, gAp} which is transformed, in three steps, to the matrix of unity. Following pi-
numbers are produced:

3
v.pD opD A D
=6l =Re M,=%00 =802 (12.43)

w w

To obtain the two pi-numbers presented in (12.41), these numbers are combined as
follows:

I

Bd = (T I12")"/*; Ku =TI, (T, IT)™* (pc/p) (12:44)
As the third pi-number, a pure material number can be produced out of the three:

4
5 _gA
I, 11;° = gcapp*; =CB (12.45)
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Fig. 46 The correlation Ku”" = f (Bd) for the hanging film at the
lower critical air velocity

Eichhorn [71] names it the “capillarity-buoyancy number” CB.
From (12.42) we obtain the following pi-set:
{Ku, Bd, CB, pc/p, tc/w, ©} (12.46)
Eichhorn [71] considers the air velocity, vg, to be a more appropriate parameter, this
corresponding to the gas-sided friction at a dry tube wall. (An explanation for this

dicission is not clear: in the turbulent flow range the gas friction number, €, is prac-

tically independent of the Reynolds number!)
2

L R O
Sep i = & (12.47)
Considering (12.47), the Ku number is transformed to
, /4
T
Ku"=Ku /{/2= (6 gwAp) (12.48)

The experimental data [69, 70] are given in Fig. 46 in the form Ku" = f (Bd). This
means that the contact angle, ©, has not yet been considered. The discrepancy due
to the different © values can be clearly seen.

Fig. 47 clearly shows that the contact angle, ©, is satisfactorily taken into account
by the function Ku” x sin ® = f(Bd). Only now it is also obvious that the “capillarity-
buoyancy number” CB exerts no influence on the hanging film. The liquid viscosity,
W, proves to be irrelevant. This is not surprising because of the fact that the respec-
tive measurement were executed in the turbulent flow range, Re = 4.15 x 10°~1.42 x
10°.

The fitted line in Fig. 47 corresponds to the process equation
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Fig. 47 The correlation Ku™ x sin © = f (Bd). The fitted line
corresponds to eq. (12.49), from [71].
> (12.49)

This example also proves that in physics small causes (here the contact angle, ®)
can result in major effects.

(Bd/8)’ 1

Ku'" x sin © =0.096 ( 1+1 .
(Bd/8) +1

Example 29: The production of liquid/liquid emulsions

Liquid/liquid emulsions consist of two (or more) non-miscible liquids. Classical
examples for this are oil in water (O/W) emulsions, for example milk, mayonnaise,
lotions, creams, water soluble paints, photo emulsions, and so on. As appliances,
teeth-rimed rotor-stator emulsifiers and colloid mills, as well as high-pressure
homogenizers are used.

All of them utilise a high energy input to produce very fine droplets of the
disperse (mostly oil) phase. The aim of this operation is, likewise in Example 27, the
narrowest possible droplet size distribution. It is normally characterised by the “Sau-
ter mean diameter” ds; [67] or by the median ds, of the size distribution. d3; and
dso, respectively, therefore represent the target quantity of this operation.

The characteristic length of the contacting chamber, e.g. the slot width between
rotor and stator in teeth-rimed emulsifiers or the nozzle diameter in high pressure
homogenizers (utilizing the shear of the high-speed liquid jet ) will be denoted as d.

As material parameters, the densities and the viscosities of both phases as well as
the interfacial tension o must be listed. We incorporate the material parameters of
the disperse phase pg and (4 in the relevance list and note separately the material
numbers p/pg and p/ug. Additional (dimensionless) material parameters are the vol-
ume ratio of both phases, ¢, and the mass portion ¢;, of the emulsifying agent (sur-
factant) [e.g. given in ppm)].
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The process parameters have to be formulated as intensive quantities. In appliances
which display two degrees of freedom, where the liquid throughput, g, of both lig-
uids which have to be emulsified is adjusted independently from the power input P,
the power per liquid volume, P/V, as well as the duration of it, namely the residence
time of the throughput, T = V/q, must be considered:

(P/V)T=E/VML'T? (12.50)

In appliances with only one degree of freedom (e.g. high-pressure homogenizers)
power is being introduced by the liquid throughput itself. Here, the relevant inten-
sively formulated quantity is therefore jet power per liquid throughput, P/q. Due to
the fact that in nozzles P e« Ap q, this results in

P/q=(Apq)/q=Ap[M L' T (12.51)

Therefore, the volume-related energy input E/V and the throughput-related power
input P/q (& Ap) represent homologuos quantities of the same dimension. For the
sake of simplicity, Ap will be introduced in the relevance list.

Now, this six parametric relevance list (the dimensionless parameters p/pq, W/ 4,
@, ¢; are anticipated) reads

{ds2; d; pa, 1a, 0; Ap} (12.52)

The corresponding dimensional matrix

Pd d o Ap Wa ds;
M 1 0 1 1 1
L -3 1 0 -1 -1 1
T 0 0 -2 -2 -1
M +T)2 1 0 0 o 12 0
3M+L+3T)2 0 1 -1 1/2 1
172 0 0 1 1 12

delivers the remaining three dimensionless numbers:

I, = A%;d = EuWe=la (Laplace number)
1/2
I, = Ll/z = W% =Oh (Ohnesorge number)
(p,do)
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The complete pi-set is given as

{ds2/d, La, Oh, p/pg, W/Wa, @, c;} (12.53)

Assuming a quasi-umiform power distribution into the throughput or into the vol-
ume, a characteristic length of the contacting chamber becomes irrelevant. In the
relevance list, eq. (12.52), the parameter d must be cancelled. The target number
IT; = ds,/d has to be dropped and the dimensionless numbers La”" and Oh” are for-
mulated with dj, instead of d. At given constant material conditions (p/p4, W/Wa, @,
¢;= const), the process characteristics will be represented in the following pi-space:

Oh:’:,z * *2. p d o I‘lz
=f(La’Oh™) > ds, "2 =f{Ap > } (12.54)
d d

Schneider and Roth [72] confirmed this dependence with two colloid mills using the
scale u=1:2.2, see Fig. 48. For the material system vegetable oil/water and ¢ = 0.5
they found the following process equation:

ds; = 4.64 x 10° Ap /3 ds, [um]; Ap [M/(LT?)] (12.55)

H. Karbstein [73, 74] investigated two rotor-stator emulsifiers (teeth rings, ZKDM),
two colloid mills (CM) and a high pressure homogenizer (HPH). She also proved
that the results (ds;) from both of the first mentioned emulsifiers did not depend on
the chamber size and were only slightly dependent on the type of apparatus. There-
fore, eq. (12.54) is confirmed. In contrast, in the case of HPH as well the nozzle
diameter as the application of counter-pressure plays a role, see Fig. 49. (For details
of the geometry of the contacting chamber see [73].)

The measurements were executed with the material system 30 % vegetable oil/
water under the addition of a fast absorbing emulsifying agent (Laurylethylenoxid

5

daz [pm] Colloid mill  d [mm]
A O Fryma MZ 50 50
S A Robst&Class 110
101 f
2
106 107 108

ENAPIQ 2 Ap ML T2
Fig. 48 Relationship ds; = f (Ap) for two colloid mills of diffe-
rent size. Material system: vegetable oil/water and ¢ = 0.5; from
[72].
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102 + : :
dsz [um]  colloid miil

teeth-ringed rotor- © O

1014 stator emulsifier o

+ | high-pressure |

homogenizer

high-pressure homogenizer
counter-pressure 50 bar

100 : ' :
104 105 106 107 108
ENV2Plg2ApMLTTZ

Fig. 49 Relationship ds, = f (Ap) for different emulsifiers.
ZKDM - teeth ringed rotor-stator emulsifier, CM — colloid mill,
HPH — high pressure homogenizer. Details on the material
system in text; from [74]

LEO-10). The viscosity of the emulsion was 30 mPa s at ¥ = 1/s. ¢4 as well as p/uq
were proved to be irrelevant. In all measurements a weaker dependence ds, (Ap)
than in Fig. 48 was found:

dsy o< Ap'/? (12.56)

The serious disadvantage of dimensional representations dj,(Ap), eq. (12.55-56), as
compared to the dimensionless one, eq. (12.54), is that these relationships are solely
valid for the material system used, for which the physical properties (0, pg, Ng) Were
not even specified. Therefore, a belated conversion in the pi-space, eq. (12.54), is not
feasible.

Jet emulsifiers belong to high pressure homogenizers, see Fig. 50. They display
only one degree of freedom. For them, the same pi-space, eq. (12.53), applies. The
coarse emulsion, produced by a nozzle, is conveyed under high pressure through
the tiny bore-holes of the jet emulsifier. Extremely high shear forces disintegrate the
primary droplets into finer ones and, in this manner, produce a stable, extremely
fine emulsion.

Fig. 51 represents the correlation ds,/d = f (La) produced by the emulsification of
the material system paraffin oil/water (¢ = 0.5; 0 = 0.7 mN/m; emulsifying agent
Tween 80/Arlacel 80) in a jet emulsifier with bore-holes of d = 0.75 mm. (In these
measurements, d has not been varied!)The result reads [75]:

d;,/d=9.151a%®  Oh, pg/u= const (12.57)
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Fig. 50 Sketch of the jet emulsifier; from [75].
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Fig. 51 Process equation in emulsification with jet emulsifier
according to Fig. 50; from [75].The fitting line corresponds to the
eq. (12.75).

In [76], the production of an extremely fine polyisocyanate emulsion in polyol with a
jet emulsifier is reported. The results obtained are evaluated in the pi-space (12.53).
The process equation reads:

ds,/d = const La™® Oh®* (ugq/p)*% (12.58)

Here, the constant is only dependent on the type of apparatus. The remaining pi-
numbers, see eq. (12.53), have presumably not been varied.

Example 30: Fine grinding of solids in stirred media mills

The fine grinding of solids in mills of different shape and mode of operation is used
to produce very fine particles with a narrow particle size distribution. Therefore, as
in the previous example, the target quantity is the median value dsq of the particle
size distribution.

The characteristic length of a given mill type is d.

The physical properties are given by the particle density, p,, the energy per fissure
area, (3, and the tensile strength, 0z, of the material. Should there be additional rele-
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vant material parameters, these can be easily converted to dimensionless material
numbers by the above mentioned ones.

As process parameter, the energy input per unit mass, E/pV, must be taken into
account. The relevance list reads:

{dso; d; pp, B, 07; E/pV} (12.59)

Pp d B E/pV oz dso

M 1 0 1 0 1

L -3 1 0 2 -1 1

T 0 0 -2 -2 -2 0

M +T)2 1 0 0 -1 0 0

3M+L+3T/2 0 1 -1 -1 1

-T)2 0 0 1 1 1

The pi-set reads

{dso/d, (E/pV)p,d/B, 0z d/B} (12.60)

Assuming a quasi-uniform energy input in the mill chamber, its characteristic diam-
eter, d, will be irrelevant. Then the pi-set can be reduced to

{(E/pV)ppdso/P, 0z dso/B} = dso(0z/B) = f{(E/pV)(p/0z)} (12.61)

In case of unknown physical properties, 07 and 3, the above dependence is reduced
to dso = f (E/pV) which can then be used for scale-up of a given type of mill and a
given grinding material.

For fine and very fine grinding of, e.g., limestone for paper and pottery manufac-
turing, bead mills are widely used. The beads of steel, glass or ceramic have diame-
ters of 0.2-0.3 mm and occupy up to 90 % of the total mill volume (¢ = 0.9). The are
kept in motion by perforated stirrer discs while the liquid/solid suspension is pum-
ped through the mill chamber.

Mill types frequently in use are the stirred disc mill, centrifugal fluized bed mill,
and annular gap mill.

H. Karbstein et al. [77] pursued the question of the smallest possible size of a labo-
ratory bead mill which would still deliver reliable data for scale-up. In differently
sized model appliances (V = 0.25-25 1), a sludge consisting of limestone (dso = 16
um) and a 10 % aqueous Luviscol solution (mass portion of solids ¢ = 0.2) was
examined.

In Fig. 52 the dependence dso = f (E/pV) is shown for four stirred disk mills of
different sizes. The correlation

dso o< (E/pV)0* E/pV <10* (12.62)
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Fig. 52 Correlation dsq (E/pV) for four differently shaped stirred
disk mills; from [77].

also applies to the smallest mill shape (V = 0.25 1), but to obtain the same ds, values,
a threefold energy input is necessary.

Furthermore, it was found that the correlation (12.62) is valid only for dso > 1 um.
To obtain even finer particles, a considerably higher energy input as according to
(12.62) is necessary. A possible reason for this finding could be that, in this size
range, the particle strength has a greater effect. It is also possible that the finest
particles escape faster from the working zone between two beads [77].

The same result is also found in centrifugal fluidized bed mills, Fig. 53. Finer
particles than 1 um are not produced.

These facts and the scattering of results in differently sized mills made a system-
atic investigation of the grinding process necessary [78]. The grinding process in
bead mills is determined by the frequency and the intensity of the collision between
beads and grinding medium. According to this assumption, the grinding result

101 I
d50 [um]
51 A
~ RN
-y BITRRIRRIIN |
®
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100 0%z
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093
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5 108 2 104 E/(pV) [kJ/kg] 105

Fig. 53 The relationship dso (E/pV) for two centrifugal fluized
bed mills of different size, from [77].
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remains constant, if both of these quantities are kept constant. The intensity of the
collision between beads is essentially given by the kinetic energy of the beads:

Ekin o< My u2 o< Vi Pm 112 o< d]%,[ Pm u2 (1263)

(dp, pum — diameter and density of the beads, u — tip velocity of the stirrer). On the
other hand, the collision frequency also depends on the size of the mill chamber
and on the overall mass-related energy input. To achieve the same grinding result in
differently sized bead mills, Ey;, as well as E/pV have to be kept idem.

The input of mechanical energy can be measured from the torque and the rotatio-
nal speed of the perforated discs. The kinetic energy can be calculated from eq.
(12.63).

The above assumption [78] was convincingly confirmed in a stirred media mill
with a perforated stirrer disc of given size (V = 5.54 1) at a constant energy input per
unit mass, E/pV = 10° kJ/kg. In batch-wise performed measurements, the kinetic
energy of the beads has been varied by the tip speed of the perforated disk stirrers as
well as by the density of the grinding media (glass, steel) and, in particular, by the
bead diameter (dy = 97—4 000 pm).

With increasing Ey;, the particle size diminishes at first, but afterwards increases
from a certain Ey, value onwards. If one considers the implemented specific energy
to be a product of the intensity and frequency of the collision between beads and
grinding medium, it follows that, at E/pV = const and an increasing intensity of the
collision, the frequency has to diminish and this results in a coarser product. This
also explains why, in the previously discussed investigation [77], particles no finer
than dso = 1 um were found, see Fig. 52 and 53.

54 O i
Vv 554 |
dso [um] E/m  10%kJ/kg
) on 08
dw 97 -4000pm
[ 0,4
;
10 pwm [kg/m3] 2894 7550 ~
ulm/sj=64 v v
5 96 O m
128 A A
Ja
2 o
100 |
v A
| Euin =dne pmu? [J]
10t 100 10" 102 10 10 5

Fig. 54 The relationship dso (Exin) at E/pV = 10% k) /kg in a
stirred media mill with perforated stirrer disc (V = 5,54 I).
Limestone/water (¢ = 0.4; ¢ = 0.8); from [78].
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Fig. 55 The relationship dso (Exin) at E/pV = 10% k) /kg for three
differently sized stirred media mills with perforated stirrer discs;
from [78].

In Fig. 55, the results shown were obtained in three stirred media mills with a
perforated stirrer disc of different sizes (V [1] = 0.73; 5.54; 12.9). The results are not
satisfactory with respect to the scale-up rule. Here, too, it can be seen that small
mills (V < 11), under otherwise identical conditions, produce a coarser product than
larger ones. A satisfying correlation is achieved by plotting the median particle size,
dso, versus the mean stress intensity. This is defined as stress intensity of the grin-
ding media multiplied by the term which takes into account the stress intensity dis-
tribution [138].

Due to the fact that [78] the energy input was split into mass-related (E/pV) and
kinetic (Eyn) energies, an earlier paper concerning the emulsification process
should also be referred to [79]. As emulsifyer, a teeth-rimed rotor-stator machine
was used and the results (dso) were correlated with both power per unit volume
(P/V) and work per unit volume (Pt/m?). This paper is also of special interest
because the evaluation is performed in a dimensional-analytical manner. The
dimensionally formulated result reads.

dso o< (E/V)™*2 (P/v) 2! (12.64)

Example 31: Scale-up of flotation cells for waste water purification

In this example, the development of a new flotation technique for waste water treat-
ment is discussed. Dimensional analysis has been used since the onset of this work.
It concerns the so-called Induced Air Flotation, IAF, which is an alternative to the
well-known Dissolved Air Flotation, DAF, the latter being already discussed in
Example 7.
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This example is divided into three parts. In (a), the development of a new, self-
aspirating and radially discharging funnel-shaped nozzle is presented. In (b), a flota-
tion cell with two spatially separated spaces is described. The inner chamber is used
for contacting gas bubbles with flocks and the annular ring around it is needed for
the tranquilization of liquid throughput. This facilitates the complete separation of
the flocks from the biologically purified waste water. It is shown how the flotation
kinetics can be determined in this continuously run cell and how this knowledge is
used to scale-up a full-scale flotation plant. On the contrary, in (c), data from batch-
wise performed experiments are used to evaluate the flotation kinetics and to scale-
up continuously run full-scale flotation cells.

a) Development of a self-aspirating and radially discharging funnel-shaped nozzle

The funnel-shaped nozzle has been conceived as a means for gas/liquid contacting
in a new class of flotation cells for waste water purification and for the removal of
activated sludge from biologically purified waste water, see Fig. 56. It essentially con-
sists of a cone with an angle of 90° which serves as the deflecting element for the
liquid propulsion jet. It is surrounded by a housing which forms, with the cone, an
annular channel. According to the Bernoulli principle, pressure drop develops at this
point and this is used to suck in the gas. The gas/liquid dispersion formed in this
manner is discharged radially with a low clearance over the floor of the whole flota-
tion cell. After loosing the kinetic energy of the free jet, it disintegrates to a swarm
of tiny gas bubbles which then slowly rise to the surface of the liquid.

The channel of the funnel-shaped nozzle, shown in Fig. 56 a [80], displays a con-
stant hydraulic diameter, Dy, = D, — D;. Therefore, the annular cross-sectional area
steadily increases towards the cone base; a diffusor is formed.

It turned out that this nozzle produces coarse bubbles which are not able to float
very fine or strongly hydrophilic flocks. A nozzle which displays a channel with a
constant hydraulic cross-sectional area, S), ~ D.2 - D, see Fig. 56 b, serves this
purpose better [81]. It also exerts a stronger suction and produces a larger gas
throughput. This has to be throttled in order to prevent tiny gas bubbles to coalesce

Fig. 56 a—c Different designs of the funnel-shaped nozzle for induced air flotation; from [80, 81, 82].
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to bigger ones: The gas-side pressure drop, Apg, represents therefore an additional,
freely eligible, parameter here.
However, this design has an inherent disadvantage, namely the annular channel
at the cone base is compulsorily narrow. With cone base diameters of D. >> 0.5 m, a
possible clogging can take place, especially if the nozzle is used for waste water treat-
ment.
The ring channel can be enlargerd to a sufficient extent, if one starts from a con-
stant hydraulic diameter (Fig. 56 a) and divides it into segments (“star-shaped
nozzle”); see Fig. 56 c. In addition, by the widening of the cone angle at the top of
the cone, a trip edge [82] is formed, by which the impinging liquid jet is better
spread out over the entire cross-sectional area of the annulus.
The relevance list for the suction characteristic of the “star-shaped nozzle":
Target quantity: self aspirated gas throughput, q¢
Geometric parameters: diameter of the propulsion jet nozzle, d
cross-sectional area of the annular channel, s
number of the segments, z
diameter of the cone base, D,
(2 channel length L. = /2 D /2)

Material parameters: liquid density, p

Process-related parameters: liquid throughput, q.
liquid head above the nozzle, H’
gravitational acceleration, g

This gives:

{ac, d,s,2 D, p, qu, H', g} (12.65)
These nine dimensional parameters deliver the following six pi-numbers:

{ac/qu ai/(d* g) = Fr, H'/d, s**/d, D/d, 2} (12.66)

Self aspirating devices (hollow stirrers, ejectors, funnel-shaped nozzles) have to over-
come the hydrostatic pressure Apyyq, = pg H”. This is taken into account by the com-
bination Fr’ = Fr (d/H’). By the way, this extended Froude number, Fr’, represents
the reciprocal value of the Euler number, Eu:

2 2 2 2
,_ A_Q d q q. P QP

Fr' =Fr (d/H) =L =L =_~L = L =E 12.67
' T (d/H) ngH d4H/g d4H’gp d4Aphydr b ( )

It turned out [81] that the result (qg/qy) is independent of whether or not the nozzle
pushes the gas against the hydrostatic pressure or sucks it from a space with lower
pressure, Apg. Both pressures have to be taken as sum: 2Ap = pgH’ + Apg. There-
fore, the process number Fr’ is expanded as follows:

2
Fr'= 9. P

—_ 12.68
& (pgH'+ Apy ) (1265
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Fig. 57 Sorption characteristic of the “star-shaped nozzle” with
and without a trip edge; after [83].

Furthermore, the number of channels, z, produced by segmentation is combined
with the cross-sectional area of the channel, s, to produce the total cross-sectional
area, S =z x s, of the “star-shaped nozzle”. Preliminary measurements showed that
D./d does not influence the sucking performance, as long the channels are filled
with the dispersion G/L. Therefore, the above 6-parametric pi-space (12.66) is redu-
ced to only a 3-parametric one:

{qc/qu, Fr', 8/d%} (12.69)

Experiments were carried out with three diameters of the propulsion jet nozzle, d,
with different number of channels, z, as well with or without the trip edge. The
result is represented in Fig. 57. It verifies that the trip edge essentially improves the
sucking performance. The fitting line corresponds to the process equation:

qc/qL= 0.97 In (Fr* d%/S) + 0.06 (12.70)

The parameter S$°°/d was varied within the limits 2.5-8.2. The best result was obtai-
ned at the lowest value.

b) Scaling up a flotation cell with spatially separated aeration and tranquilisation space for
continuously carried out induced air flotation (IAF) in waste water treatment

Following the biological waste water purification, an easy separation of activated

sludge flocks can be achieved by flotation. To facilitate this separation, the flotation

cell is subdivided into two parts, each having equal superficial areas, Fig. 58. The

inner cylindrical vessel serves as the aeration chamber, this being equipped with the

forementioned funnel-shaped nozzle. Here, particles are brought into intimate con-
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Fig. 58 Sketch of a flotation cell with spatially separated
aeration and final solids separation space; from [84].

tact with gas bubbles, which cause them to float to the surface and are subsequently
removed from it with a skimmer. The liquid throughput, already largely freed from
solids, passes the adjacent tranquilising annular space from top to bottom (in a
counter-current sense to the floating residual flocks). In the upper area of the annu-
lar space, the flocks form a filter which supports the separation.

If we assume that the current in the annulus is not back-mixed, then it has a
residence time characteristic of an ideal plug flow. Due to the fact that flotation is a
depletion process which obeys the 1st order time law, the flotation kinetics is given
by the correlation

(pt —0

W= kf'ﬂ (1271)

—-In
ke [T™"] is the flotation rate constant, T [T] is the mean residence time, T = V/q, and ¢
is the mass portion of solids in the liquid. When liquid samples are taken along the
annulus and ¢ is plotted on a single-log-scale according to (12.71), a straight line
with the slope of kf must result in case the above assumptions are fulfilled. In our
case, this is fully confirmed, see Fig. 59. This graph verifies that the fastest flotation
occurs at the lowest gas throughput, because here the bubble coalescence is least
marked.

In scaling up of this type of flotation cell, the following must be considered: Both
cell spaces should have a flow with a superficial velocity of v = 10 m/h (resulting in
a total superficial velocity of v = 5 m/h). This guarantees a satisfying separation of
the flotate from the liquid throughput. In adddition, the state of flow in the annular
space must be laminar. To achieve Re = 2 000, an insertion of a tranquilizing grid
will possibly be necessary.
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Fig. 59 Flotation kinetics in the material system activated

sludge/biologically purified waste water; from [84]. Parameter:
gas throughput, qc.

For a given liquid throughput, the superficial area of the flotation cell and its di-
ameter can be calculated from the above details. The cell height, H, results from the
measured kgt values according to the following reasoning:

t=V/qu=S H/q; qu=v S;t=H/v—> H= (k1) v/k¢ (12.72)
(S — superficial area) As a rule, the height of the flotation cell will amount to H < 2 m.
Example: k = 1 min™"; v=10 m h™"; depletion ¢;/@y = 1.0 x 10~ H=1.53 m

c) Scaling up of a continuously operating flotation cell on the basis of model experiments
performed in batch experiments

In a laboratory flotation cell (e.g. 200 x 300 mm) with only one space for aeration
and flotation (full back-mixing), samples are taken during the flotation experiment
and the mass portion of solids in liquid, ¢, is determined. In the representation In
©/¢o = f (t) a straight line with the slope k¢ (flotation rate constant k¢ ) results. k¢
depends on the material system, on the concentration and nature of flotation aids
(flocculants) as well on the process parameters qr, qg and g. Interestingly, in all
investigated material systems (dye pigments, plastic particles, printers ink, film
emulsions, i.e. Hg halogenides in gelatine) the same proportionality was found:
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ko< qg qf (12.73)
see Fig. 60. This expression (12.73) reads in a dimensionless form as:
kg oc ‘C]l—G Fr/2 (12.74)
L

k¢ indicates that ke [T™] can always be transformed into a pi-number with the aid of
pertinent material parameters (this has been omitted here for simplicity). The
inspection of this correlation in two geometrically similar flotation cells (u=1: 2)
gave proof that this approach is correct, see Fig. 61.

If the dependence (12.74) is known, a batch-wise operated full-scale flotation cell
can be scaled up according to (12.74).

A continuously operated flotation cell with fully back-mixed contents — or a cells-
in-series arrangement with N equally sized cells, respectively — is scaled up accor-
ding to the same recipe as 1st order chemical reactions:

1=V _1%"¢
N—l.‘lt_qfk—f W (12.75)
—Nir=V o 1P T
N=N:t= q= kf Py (12.706)
10°
QL] qg[m3m)
3 d - 19 0.30
M A 21 0.15
g & m 18 0.07
® 17 0.20
) ® 20 0.38
107 r X 19 0.05
A 18 0.21
0 21 0.30
O z2 0.39
O 24 0.15
107} - - ]
k=61.4m=®h2
3 tgeqi? [m°h2?]
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Fig. 60 Dependence of flotation kinetics on pro-  throttling of qg. Material system: waste water
cess conditions (qg, q.) in a batch process. from a printing works with 5-6 g TS/I, floccu-
Full signs: Cell (0.5° x 0.6 m) with a “star-shaped lant: 45 ppm Peratom 815 of Henkel/Diissel-

nozzle” according to Fig. 52 ¢, D. =80 mm,; dorf; from [83].
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Fig. 61 Checking of the correlation k¢e< (qs/qu) Fr*/? in two
geometrically similar flotation cells (uw=1: 2). Material system:
Washing water from the production of the film emulsion (AGFA)
with ca. 25 mg Ag/l; from [86].

For the mass portion of solids, @y, in the outlet from a N cells-in-series it follows:

on=—0 (12.77)
(1+k.T)

Remaining signs: Cell (0.2° x 0.2 m) with a funnel-shaped nozzle according to
Fig. 52 a, D, = 60 mm; no throttling of qg. Material system: Process waters from
Novodur® pigment production with ca. 4 g TS/], flocculant: 410 ppm RO + 15 ppm
417 S of Stockhausen/Krefeld; from [85].

With the aid of correlations (12.75) and (12.76) as well as knowing the k¢value and the
accepted ¢ value of the outlet (¢ or @y), the mean residence time, t, of the liquid
throughput, q, as well the liquid volume of the flotation cell, V =t q, can be calculated.
To ascertain the same kevalue in all cells, (qg/q;) Fr*/* = idem must be kept.

Example 32: Description of the temporal course of spin drying in centrifugal filters

The centrifugal filter represents the most frequently used filter centrifuge operating
on a horizontal axis. The operating cycle consists of loading, wet spin, cake wash,
dry spin, and unloading (peel out). The dry spin requires most time. It consists of
the rapid draining of the mother liquor from the capillary spaces and the slow drai-
ning of the surface liquor. The dry spin, which governs the flow rate, has been com-
pleted when the equilibrium residual moisture, w.., is attained in the filter cake.

Before considering the dry spin process in a dimensional analysis, some terms
have to be explained and defined.

1. Centrifugal acceleration, b [LT %, is expressed by the multiple (z) of gravita-
tional acceleration g: b=z g

2. The specific filter cake resistance, o [L™], is defined with the equation descri-
bing the pressure loss, Ap, of the liquid in the porous filter cake at laminar
flow:
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Ap=avph (12.78)

v = q/S - liquid flow rate q related to the filter surface S; h — cake height;
u — dynamic viscosity.

3. The porosity, € [-], of the filter cake is defined as the ratio of pore volume to
total volume.

4. The residual moisture, w [-], of the filter cake reflects the ratio of liquid mass
to solid mass.

5. The degree of saturation, S [], is defined as the ratio of the pore volume filled
with liquid to the total pore volume:

s—whe 178 _ cw (12.79)

max

£

whereby p; and py, are the densities of solid matter and water, respectively, and Wy,
is the cake moisture at saturation.

Equilibrium saturation of the cake, S.. = W../Wpay, Will initially depend on the
physical properties of the filter cake. They are characterized by a, €, © and K. ®
represents the contact angle (degree of wettability) and K any other grain parameters
such as roughness and so on. Furthermore, the physical properties of the wash liq-
uid (density, p, and surface tension, o) and, finally, centrifugal acceleration, b, as
process parameter will be of importance:

{Se; 0, €, 0, K, p, 0; b} (12.80)

Four of these eight process-relevant variables are dimensionless, the other four form
only one further pi-number:

p a b o
M 1 0 0 1
L -3 -2 1 0
T 0 0 -2 -2
M 1 0 0 1
~(3M + L+ T/2)/2 0 1 -1
-T2 0 0 1 1
=00
Hl = p b

From the relevance list (12.80) it follows that:
Se. = Weo/Winax = £ (I3, €, ©, K) (12.81)
Tests [87] have shown that this relationship is described by the analytical expression

S..=T17%f(e, ©,K) = €

p—%)“ f(e 0,K) (12.82)
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and hence by
S.. = const (1/z)*2 (12.83)

whereby z = b/g. Of course, the numerical values of the constants and the exponent
are dependent on the material system under examination.

In order to track the time course of the dewatering process up to an average
degree of saturation, S;, = Wy, /Wmay, the parameters time t, viscosity u of the wash
liquid and the geometric parameters of the cake (cake height, h, and cake residual
height, h, remaining after peel out) must be added to the above relevance list. Since
we are dealing with a creeping flow in the centrifugal field, p is only effective in
combination with b: pb; compare the form of IT;. Apart from the obvious geometric
numbers h/h, and ah? and the dimensionless parameters S, €, ®, K, two further
numbers will be involved:

pb a t o w
M 1 0 0 1 1
L -2 -2 0 0 -1
T -2 0 1 -2 -1
M 1 0 0 1 1
—2M+1)/2 0 1 0 -1 -1/2
2M+T 0 0 1 0 1

o 2
I, zg—g HZEMpT (12.84)

I1, is the same number as that formed before. The complete pi-set is now:
{Sm, h/h,, 0h? e, ©, K, I, I1, } (12.85)

The tests [87] were performed with small acryl glass spheres of d;, = 20-50 um. The
material numbers €, ©, K remained unchanged. However, h/h,, oh?, I1; and 11,
were varied by changing b, t and h. It was found that the test results can be correla-
ted in the pi-space {Sy, IT,, ah?}, i.e., neither II; nor h/h, is significant. Fig. 62
shows this result. The reciprocal value of II, (0¢h?)®* = [pb t/(u o h)]™ is plotted on
the abscissa. The process equation reads:

Sm=0.26 (p—bt)*Z/3 (12.86)

poh

The irrelevance of hy is not surprising if the solid particles are neither damaged nor
compressed in the peel out process and if the capillary rise height is << hy. The
above pi-space should also apply for filter cakes which can be compressed to a grea-
ter extent [87]. The fact that IT; is not significant at total wetting, can only document
the irrelevance of o during the dry spin process.
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Fig. 62 Temporal course of the average residual moisture,
W, as a function of pb t/(u a h) for given geometric and mate-
rial conditions at centrifugal accelerations of b = 300-1500 g;
from [87].

Example 33: Description of particle separation by means of inertial forces

Let us consider the separation of aerosols (droplet size dp = 0.2 — 20 um) from a gas
stream in a dust separator (e.g. wire filter, cyclone, etc.). The result, the “fractional
degree” 1, is characterized by N = (Qin — Pout) / Pin-

This target quantity is dependent on the following quantities:

geometric parameters: particle diameter, dp and a
characteristic length, D, of the separator

physical properties: particle density, pp,
density, p, and viscosity, u, of the gas

Pprocess parameters: gas velocity, v, or the pressure drop Ap < v* (o =1-2)
because this variable is characteristic of the separating
device.

This seven parametric relevance list

{n¢ dp. D; pp, p. 15 Ap} (12.87)

can be streamlined by a closer examination of the problem and by preliminary tests:

1. For sufficiently small particles Stokes’s law applies. According to this, the fric-
tional force is Fr = 6 wr wv= 3 7 dp u v. At the same time, the inertial force is
Finass=m b= (7t/6) p, 3 b.

In the steady-state Fg = Fp5. For the settling velocity, it follows that v=p, df,
b/(18 ). From this we can deduce that v = p,d>.

2. The gas velocity, v, and the pressure drop, Ap, these being necessary for the

separation of a specific limiting droplet size (e.g., ds¢), decrease with d;, and
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are strongly dependent on the type of separator device: Ap «< d;> — Apd; =
const (geometry).

Since the particle size is bound by both p, d5 and Ap d}, we can combine
these two requirements to obtain:

pp dp Ap® (12.88)

As a result of closer examination (1) and preliminary tests (2), the above 7-parame-
tric relevance list can be reduced to the following 5-parametric one:

{ne D; p, w; pp dy Ap’} (12.89)

Since the target number 1 is dimensionless, we only have to form one single pro-
cess number:

P D w ppdy Ap®

M 1 0 1 5
L -3 1 -1 -5
T 0 0 -1 -4
M+T 1 0 0 1
3M+L+2T 0 0 2
-T 0 0 1

3 .6 2

p,d Ap

A=2 b (12.90)
pD™ 1

We will first draw the square root of this dimensionless group and then relate it to
the well-known Euler, Reynolds and Stokes numbers:

Eu=Ap/(pv’); Re=vDp/u; Sto=p,d;v/(Dp).

It follows that
3 32
All?= dp 1[?; ZAP
pwD
Biirkholz [88] calls this combination of dimensionless numbers the “deposition
number” W,>3/2.

Furthermore, the dimensionless number A'/* indicates the existence of the rela-
tionship Ap o D. For each desired fractional degree of separation, the necessary
pressure drop, Ap, is proportional to the characteristic linear dimension D. Different
separator types can therefore be compared if D is selected sensibly, see [88].

The significance of this “deposition number” is impressively demonstrated by the
comparison in Fig. 63. To obtain the particle diameter d, with the 1st power, the
abscissa is transformed to AY® A W, 1/2,

= Eu Re'/? Sto*/%. (12.91)
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Fig. 63 Fractional degree of separation, 1, of two differently
thick filters (11 and 770 mm) having the same wire thickness.
Correlation of the measurements by means of the number
AV A W,/ from [88).

Example 34: Gas hold-up in bubble columns

Bubble columns are important appliances for the absorption of gases in liquids and,
consequently, for the execution of chemical reactions in gas/liquid system. In this
context, the attainable interface (4 sum of the surfaces of all gas bubbles) is of most
interest because it affects the mass flow in a directly proportional manner. If a gas
throughput q is introduced into a bubble column with the diameter D and the liquid
height H, the liquid height rises by the amount occupied by
the gas bubbles in the liquid. The gas fraction in the liquid, the
so-called gas hold-up H" can be determined from the liquid
height Hy, of the gassed and the non-gassed liquid (see sketch).

et D

H = ve = Ty M (12.92) ‘
=V, - H :

In the course of extensive measurements on bubble
columns with different dimensions [89], the gas hold-up H”
proved to be directly proportional to the volume-related H Hy
mass transfer coefficient k;a. For this reason, H” will be the
target number in the following considerations.

Bubble columns with a single-hole plate as gas distributor
(see sketch) were used in these investigations. D, H and d

(= hole diameter) therefore describe their geometry in full. 1}
The densities (p and p’) and the viscosities (v and V') of
both phases (" gas) and the surface tension, o, must be taken d

into account as physical properties. a
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The process parameters are the gas throughput q and, on account of the extreme diffe-
rences in density, the gravity difference gAp =g (p — p)-
The complete relevance list is therefore:

{H;D,H,d; p,p’, v, V, 0 q, gAp} (12.93)

If we exclude the target number H” and the trivial numbers H/D, d/D, p’/p and
v’/v, the remaining relevance list is

{D;p, v, 0, q, gAp} (12.94)

from which, via the dimensional matrix, the following three dimensionless num-
bers result:

P D v Y q gAp
M 1 0 1 1
L 3 1 2 0 3 2
T 0 0 1 ) - 2
M 1 0 0 1 0 1
3M+L+2T 0 1 0 1 3
T 0 0 1 2 1 2

oD _Re’ q gApD’ Re’
lepvsw HzED—VE Re I;= pv2 EAI’EW (12.95)

This dimensional analysis produces two dimensionless numbers, I1; and ITj,
which, apart from the column diameter, contain only physical properties, and the
Reynolds number IT, as the process number (because it contains ).

However, this is unsatisfactory because we must expect the hydrodynamics of a
bubble column to be substantially governed by gAp. Consequently, the process
number must contain gAp. We must therefore combine IT, and Il; in order to
obtain the modified Froude number Fr", which is probably the true process number:

2
215 = #"Ap =Fr" (12.96)

The complete pi-set now becomes:
{H"; H/D, d/D; p’/p, V'/v, Fr", Re, We}

Comprehensive measurements [89] were performed to verify this pi-space and to
evaluate the following process characteristics:
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Fig. 64 The relationship H*(Fr") confirms the expectation that
the gas hold-up H” in a bubble column is dependent on the
process number Fr'; from [89)].

a) The relationship H" = f (Fr") was examined using a bubble column of given
geometry; water was used as the liquid and the physical properties of the gas
were varied over a wide range. Air, nitrogen and nitrogen/hydrogen mixtures
were used. The result in Fig. 64 demonstrates that Fr” takes full account of
the influence of both densities and that v'/v is obviously irrelevant. The pro-
cess equation is:

H"=15.0 Fr"%% (12.97)

b) Further measurements were carried out with one single material system
(water/air) in bubble columns of different geometries, see Fig. 65. The exten-
ded process relationship now reads:

H" =16.7 Fr"** (H/D)°? (d/D)>'* (12.98)

As far as the scale-up of a bubble column from a laboratory to an industrial
scale is concerned, one will have to keep in mind that the scale-up rule is not
v = idem, as is often stated in the chemical-engineering literature, but Fr =
v?/(d g) = idem. This means:

vr=vi /dp/dy = v 1>’ (12.99)

c) The influence of the physical properties of the liquid phase was also investi-
gated in one single model bubble column using water and, in addition, 12
different pure organic liquids, the physical characteristics of which varied
substantially, see Table 2 in [89]. The result of these measurements is presen-
ted in Fig. 66. The dimensionless numbers had to be combined as follows in
order to correlate the measured values:
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Fig. 65 Dependence of the gas hold-up H* on the geometry of
the column; from [89].

[ 0.5
p=P/PFr__ v(op) (12.100)
ReWe™ D™ gAp

The disadvantage of the resulting number combination B is that it is not a pure
material number, but still contains the column diameter, D. For safe scale-up, the
validity of this correlation will therefore have to be checked on columns of different
diameters and with simultaneous alteration of the material system.

The correlation from Fig. 66 may give the impression that it will always be possi-
ble to depict an n-digit pi-space two-dimensionally using the analytical evaluation.
This is not necessarily the case. The more complicated the physical facts are, the
more incomplete the analytical description and depiction will be. Indeed, it is quite
easy to imagine situations where this will not even be possible. One example is the
pressure drop characteristic of the straight, smooth pipe in Fig. 1, the analytical
reproduction of which is likely to cause considerable problems!

-1
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D52 g A
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Fig. 66 Influence of the physical properties of both phases on the
gas hold-up H™ in a bubble column of given geometry, from [89].
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13
Selected Examples of the Dimensional-analytical Treatment
of Processes in the Field of Thermal Unit Operations

Introductory remark

Besides fluid mechanics, thermal processes also include mass transfer processes
(e.g. absorption or desorption of a gas in a liquid, extraction between two liquid pha-
ses, dissolution of solids in liquids) and/or heat transfer processes (energy uptake,
cooling, heating, drying). In the case of thermal separation processes, such as distil-
lation, rectification, extraction, and so on, mass transfer between the respective pha-
ses is subject to thermodynamic laws (phase equilibria) which are obviously not scale
dependent. Therefore, one should not be surprised if there are no scale-up rules for
the pure rectification process, unless the hydrodynamics of the mass transfer in
plate and packed columns are under consideration. If a separation operation (e.g.
drying of hygroscopic materials, electrophoresis, etc.) involves simultaneous mass
and heat transfer, both of which are scale-dependent, the scale-up is particularly dif-
ficult because these two processes obey different laws.

Heat transfer processes are described by physical properties and process-related
parameters, the dimensions of which not only include the base dimensions of Mass,
Length and Time but also Temperature, ©, as the fourth one. In the discussion of
the heat transfer characteristic of a mixing vessel (Example 20) it was shown that, in
the dimensional analysis of thermal problems, it is advantageous to expand the
dimensional system to include the amount of heat, H [kcal], as the fifth base dimen-
sion. Joule’s mechanical equivalent of heat, J, must then be introduced as the corre-
sponding dimensional constant in the relevance list. Although this procedure does
not change the pi-space, a dimensionless number is formed which contains J and,
as such, frequently proves to be irrelevant. As a result, the pi-set is finally reduced
by one dimensionless number.

Example 35: Steady-state heat transfer in bubble columns

The heat transfer characteristic of a mixing vessel (Example 20) is represented by
the pi-space:

{Nu, Pr, Re, D/d, yoAT}
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see eq. (9.10). Instead of yoAT the pi-number Vis = u,/u is normally used (see
Example 15). Due to the material system water/air, in this example this number will
be ignored.

The pi-space of a heat transfer characteristic of a bubble column is different to
that of a mixing vessel in that the pertinent process quantity is the gas throughput
q. In addition, because of the extremely large density differences in the material
system G/L, gAp will also play a decisive role:

Target quantity: heat transfer coefficient, h

Geom. parameter: column diameter, D

Physical properties: density, p, and viscosity, u, of the liquid
heat capacity, C,,, and conductivity, k

Process parameters: Gas throughput, q

Gravity difference, gAp
{h; D; p, u, C,,, k; q, gAp} (13.1)

This 8-parametric set delivers the following four pi-numbers:

Nu=h D/k Nusselt number

Pr=C,u/k Prandtl number

Re=qp/(Dw Reynolds number

Fr' =q” p/(D° gAp) Froude number

{Nu, Pr, Re, Fr'} (13.2)

W. Kast [90] found that in bubble columns the intensity variable superficial velocity,
v o< q/D?, is also decisive for heat transfer. (The same was found for mass transfer in
bubble columns, see Example 10 and Example 38). From the dimensional analysis
point of view, v is an intermediate variable, the introduction of which reduces the
above 4-parametric pi-space to a 3-parametric one. For this purpose, first the two q
containing numbers have to be formulated with v instead of q:

Re=vDp/u Reynolds number
Fr'=v?p/(D gAp)  Froude number

By the combination of the three D containing numbers (Nu, Re, Fr'), D can be eli-
minated, which leads to the following two pi-numbers:

Stanton-Kennzahl
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This leads to the following pertinent pi-space:
{St, Pr, ReFr'} (13.3)

We would have obtained this 3-parametric pi-set if we had correspondingly rearran-
ged the relevance list:

{h; p,u, Cp, ks v, gAp} (13.4)

p W gAp G h k v
M 1 1 1 0 1 1 0
L -3 -1 -2 2 0 1 1
T 0 -1 -2 -2 -3 -3 -1
0] 0 0 0 -1 -1 -1 0
VA 1 0 0 0 1/3 0 -2/3
Z, 0 1 0 0 1/3 1 1/3
Zs 0 0 1 0 1/3 0 1/3
-0 0 0 0 1 1 1 0

Z;=M+T+A-4/30 Z,=3M+L+T+A+2/30

Zy=A+2/30 A=-1/3 (3M + L+ 2T)
h k Vp2/3
I =—5— I, =5c I =———5
(pughp) " C, P (ngap)
I1, H;l = Rlill%r = St I, =Pr Hz = ReFr

This dimensional analysis is only briefly presented here, because it leads to pi-
expressions with broken exponents.

The evaluation of test results [90] in Fig. 67 shows that the 3-dimensional pi-space
can be further reduced to a 2-dimensional one through the product combination of
Re Fr Pr’. Apart from his own measurements, Kast also included extensive experi-
mental material by Kélbel et al. [91]. The correlation

St ee [3 (ReFr*)Przr/3

leads to the dependence h o< v'/* when the same material system is used.

Zlokarnik [58/2] determined the heat transfer characteristic of a mixing vessel,
equipped with a self-aspirating hollow stirrer, using the material system water/air.
This enables a direct comparison between the heat transfer behavior in a stirring
vessel at gassing and a bubble column. Fig 68 shows that in gas/liquid contacting in
a mixing vessel, approximately twice as much heat can be transferred through the
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Fig. 68 Comparison of the heat transfer behaviour of a mixing
vessel with a self-aspirating hollow stirrer [58/2] and a bubble

column [90].

wall as in a bubble column. Besides this, h o v'/* applies here. This also confirms
that the hydrodynamics in a gassed stirred vessel is more strongly influenced by the

stirrer than by the gas throughput.
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Example 36: Time course of temperature equalization in a liquid with tempera-
ture-dependent viscosity in the case of free convection

Temperature equalization is to be measured with respect to time in a viscous Newto-
nian liquid located in a thin-walled copper cylinder. Heat will be transferred alterna-
tely from one thermostat, with Tj, to another where T, > T;. In this example, two
questions arise:

a) How can the measured T(t) curve at a selected measuring point (e.g. axis) be
described by means of a dimensional analysis ?

b) Do identical T(t) curves result when measured under the conditions required
by similarity criteria? This question is particularly important if the tempera-
ture coefficients of viscosity of the liquids employed substantially differ.

The target quantity in this process is the temperature, T, of the liquid. We will include
the cylinder diameter, d, as characteristic geometric parameter in the relevance list.
The physical properties are the density, p, the viscosity, |, the heat capacity, C,, the
thermal conductivity, k, and the temperature coefficients of viscosity, yo, and of den-
sity, PBo. The process parameters are the experimental time, t, gravitational accelera-
tion, g (because of the density differences on account of the temperature field) and
the two characteristic temperatures:

T() = (T1+T2)/2,
to which the numerical values of all physical properties are related and
AT=T,-Tj,

the maximum temperature difference for the respective temperature equalization.
This leads to the following 12-parametric relevance list:

{T d; p, w, Cp Kk, Yo, Bos g To, AT, 1} (13.5)

from which eight dimensionless numbers will be obtained in conjunction with the
dimensional system [M, L, T, ©®]. One of these numbers will represent energy dissi-
pation which cannot be of relevance in this process. To simplify matters, it is advisa-
ble to use the dimensional system which has been extended to include the amount
of heat [M, L, T, ©, H], as already demonstrated in Example 20 on page 80. In this
case, the mechanical equivalent of heat, J, must be incorporated and this identifies
the superfluous dimensionless number.
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p d w AT C, t g k J Yo Bo T T

M 1 0 1 0 -1 0 0 0 1 0 0 0 0
L -3 1 -1 0 0 0 1 -1 2 0 0 0 0
T 0 0 -1 0 0 1 -2 -1 -2 0 0 0 0
(S 0 0 0 1 -1 0 0 -1 0 -1 -1 1 1
H 0 0 0 0 1 0 0 1 -1 0 0 0 0
Z, 1 0 0 0 0 1 -2 0 -2 0 0 0 0
Z, 0 1 0 0 0 2 -3 0 -2 0 0 0 0
Z3 0 0 1 0 0 -1 2 1 2 0 0 0 0
Zy 0 0 0 1 0 0 0 0 -1 -1 -1 1 1
Zs 0 0 0 0 1 0 0 1 -1 0 0 0 0

In addition to the obvious dimensionless numbers YoAT, BoAT (or Bo/Yo), T/AT and
To/AT, the following four dimensionless numbers appear:
233 3 222
- d ATC
let_uz Hz:gpzd :%EGa H3:%E v I—14:]p ——>
pd W Wp D

This 8-parametric pi-set can be streamlined by the following, physically founded,
considerations:

1 Il is irrelevant: The dissipated energy is negligibly small in the case of free
convection.

2 To/ATis superfluous because the material function, u(T), can be represented
invariantly with respect to Ty, see Sect. 8.1.

3 The gravitational acceleration, g, and hence the Galileo number, Ga, only occur
together with yoATas the Grashof number, Gr=v,AT Ga (see Example 16).

4 In the case of creeping motion, it is necessary a) to transform the mass-related
heat capacity C, in Il; into a volume-related one (pC,) and b) g and p can
only occur as gravity gp. These two requirements have been fulfilled when
Gr has been multiplied with Pr and TT; has been combined with IT; (= Pr™')
to give the Fourier number Fo:

I, I, = p(i(dz =Fo (13.6)
Finally, once the target number T/AT has been replaced by a temperature number

Tt T, 1 _T-T,
O=xT ~ar t 2~ ar (13.7)
which is standardized to one, the complete pi-set becomes
{®, Fo, GrPr, yoAT, Pr, Bo/Yo} (13.8)

The following remarks apply to the influential range of individual dimensionless
numbers:
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Fig. 69 O (Fo) courses for the cooling and heating of a single

liquid (superheated steam cylinder oil) at GrPr = idem and two
different yoAT values; from [27].

1  Free convection does not come into play at very small values of Gr. In this
case, temperature equalization takes place as in a solid body according to
the process equation:® = f (Fo).

2 In the range of creeping flow, as a result of free convection, the process equa-
tion © = f(Fo, GrPr) is applicable for small values of yoAT.

3

The following applies only for larger values of YoAT: © = f (Fo, GrPr, YAT).

In order to verify these facts, measurements were performed in three geometrically
similar copper cylinders with D = 30.0; 37.8 and 47.2 mm and five different liquids
(glycerol, superheated steam cylinder oil, silicone oil Baysilon M 1.000, Desmophen
1.100 and HD oil SAE 90). The standard representation of their material functions
w(T) almost corresponds well (see Example 11).

Fig. 69 shows the O(Fo) curves for heating and cooling of superheated steam
cylinder oil at constant values of GrPr but two different yoAT values. Because yoAT
is not constant, the respective curves do not correlate, this being documented in
Fig. 70. This shows the temperature courses of four different liquids. These were mea-
sured at GrPr=idem and yoAT =idem but display different Pr and (3y/y, values.
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Fig. 70 ©(Fo) courses for the cooling and heating of four diffe-
rent liquids at GrPr and yoAT = idem, but Pr, Bo/yo # idem, from
[27].

Example 37: Mass transfer in stirring vessels in the G/L system (bulk aeration)
Effects of coalescence behavior of the material system

The mass transfer process (absorption, desorption: “sorption”) in gas/liquid contac-
ting is described according to the Two-Film Theory with the general mass transfer
equation:

G=k AAc
where:
G - mass transfer rate [kg s™'] through the phase boundary
ky - liquid-side mass transfer coefficient [m s™]
A - interfacial area (sum of the surfaces of all gas bubbles) [m?]
Ac - characteristic concentration difference [kg m™] of the dissolved

gas between the phase boundary and the liquid bulk

For bulk aeration, an uniform distribution of gas bubbles in the liquid is assumed
and the mass transfer is therefore related per unit volume:
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G/V =k (A/V) Ac=ki a Ac

Since both ki and the volume-related interfacial area, a = A/V, are not easily accessi-
ble for measurement, they are combined to form the “overall mass transfer coeffici-
ent k;a” which is then defined with the above overall mass transfer equation:

ka= VLAC
Since part of the gas mixture (e.g. air) is absorbed as it bubbles through the liquid
column, the composition of the gas mixture changes. Furthermore, the pressure in
the liquid is higher at the gas inlet than in the head space above it. This difference
in partial pressure is taken into account by the mean logarithmic concentration dif-
ference, Acy,:

99 _ Ac, ZAC2

m Cl —C Cl
(e e

¢; and ¢, are the saturation concentrations under the (p, T, x) conditions at gas inlet
(1) and gas outlet (2); c is the concentration of the gas dissolved in the liquid bulk, x
is the mol fraction of the absorbed component of the gas mixture.

The selection of the volume-related and, therefore, intensively formulated variable
ki a, this being the target quantity of the mass transfer process, implies the following
consequences:

Ac

Ac, =¢, —¢

1  Since a quasi-uniform material system is assumed, k;a should not depend on
geometric parameters.

2 On account of kg >> ki, kja must be independent of the physical properties of
the gas phase.

3 Since the target quantity k;a is an intensity variable, the process parameters
must also be formulated intensively.

According to these premises, the relevance list must be formed with the following
parameters: Target quantity: kia; physical properties: density p, viscosity u, diffusivity
D and the coalescence parameters S; of the liquid phase. Despite extensive research,
coalescence phenomena have still not been clarified to such an extent as to permit
explicit formulation of the coalescence parameters (see [22], section 4.10). Process
parameters: volume-related mixing power P/V, superficial velocity v of the gas and
gravitational acceleration g. (The decision in favour of P/V and v instead of P/q and
q/V was based on extensive research results obtained in the last three decades, see
Section 10.4.1)

{kia, p,w, D, S;, P/V, v, g} (13.9)
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p u g k.a P/V v D
M 1 0 0 1 0 0
L -3 -1 1 0 -1 1 2
T 0 - -2 -1 -3 -1 -1
Z 1 0 0 13 23 -1/3 -1
Z, 1 0 -1/3 1/3 1/3 1
Zs 0 0 1 -2/3 4/3 1/3 0
Z,=M+T+2A Z,=3M+T+A Z3=A=-1/3 (3M + L + 2T)

1/3 1/3

I, = (kLa)* = kﬁ(%) = k]ﬂ(glz)

. P/V P/V
m, =) =P = PV
(P ug’) p(vg’)
1/3
V) _ -1 _ D D
M=v="L_=Y_ I,=s :TP:V
(ug) (vg)
The following pi-set resulted here:
{(kia)", (P/V)", v, Sc, Si'} (13.10)

Fig. 71 shows a correlation of the mass transfer measurements in this pi-space. The
measurements were performed under unsteady-state conditions by several authors
in the water/air system which is a coalescent one, using the turbine stirrer (see
sketch in Fig. 34) as a mixing device. The measurements cover an extreme experi-
mental scale of u = 1-80. The geometric parameters were broadly varied: d = 0.05—
3.1m; D =0.15-12.2 m; H = 0.15-6.1 m. Between B and v the following correlation
exists: B = (/4) v

In contrast, Fig. 72 shows the results of mass transfer in the system: aqueous 1-n
sodium sulphite solution/air. These measurements were carried out under steady-
state conditions in vessels with hollow stirrers on the scale w=1:5 [58/1, 92]. In
this material system, the high salt concentration (70 g/l) fully suppresses bubble
coalescence. In the case of the self-aspirating hollow stirrer (see Fig. 28), the stirrer
power and gas throughput were coupled via the stirrer speed and were therefore
dependent on each other. Consequently, v does not occur explicitly in the represen-
tation in Fig. 72, because it is a function of (P/V)".

These results can be summarized as follows: In case of a coalescent material
system, for example in pure liquids of low viscosity (e.g. water), the absorption rate
depends to an equal extent on P/V and on v e q/D*

(kea)" o< (P/V) 4 v0° A
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Fig. 71 Sorption characteristic of a mixing vessel with turbine
stirrer for a coalescing material system (water/air), from [53].
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with fully suppressed coalescence; taken from [58/2, 92].
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In completely coalescence suppressed systems, for example in many highly concen-
trated aqueous salt solutions — see [22], Section 4.10 — in contrast to the above, the
following applies:

(kLa)* o (P/V)¢07 VJ,:().Z (1312)

Only with self-aspirating hollow stirrrers, where v" is not an independent process
parameter, the following correlation was found:

(kpa)” o (P/V)™0%. (13.13)

This is impressively demonstrated by Fig. 72.

From the above, the following conclusion can be made: High power inputs (P/V)
are justified only in coalescence inhibited material systems. In other words, the
generation of very fine primary gas bubbles in coalescent-prone systems is not eco-
nomically justified.

Example 38: Mass transfer in the G/L system in bubble columns with injectors as
gas distributors. The effects of coalescence behavior of the material system

Injectors are two-component nozzles which utilize the kinetic energy of the liquid
propulsion jet to disperse the gas continuum into very fine gas bubbles and to dis-
tribute them into the liquid. (In contrast, with ejectors, the kinetic energy is utilized
to produce suction.) Their advantage over stirrers is that the liquid jet causes gas
dispersion directly while the stirrer has to set the entire contents of the vessel in
motion in order to generate the necessary shear rate in the liquid. Their disadvantage
is the predominance of severe coalescence on account of the high gas bubble density
in the free jet of the G/L dispersion. However, in contrast to stirrers, the injector
cannot cause redispersion of the large gas bubbles.

Design data for the so-called slot injector — see the sketch in Fig. 74 — are presen-
ted in the following. The shape of its mixing chamber performs two different func-
tions:

(@) Due to the converging walls of the casing, the shear rate of the free jet increa-
ses along the mixing chamber. However, because the cross-sectional area of
the mixing chamber remains unchanged, this does not result in an additional
pressure drop.

(b) The free jet of the G/L dispersion leaves the slot-shaped mouthpiece in the
form of a ribbon which mixes more quickly into the surrounding liquid than
a jet with a circular cross-section. This counteracts bubble coalescence.

For optimum design of injectors for G/L contacting their pressure drop and sorp-
tion characteristics must be known. The first is needed to dimension the conveying
devices (pumps and blowers), the latter to establish the necessary gas and liquid
throughputs.
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Fig. 73 Pressure drop characteristics of an injector; q is related
to standard conditions (20 °C, 1 bar)
a) The pressure drop characteristics of an injector are based on the following rele-
vance lists:
for the gas throughput : {Ap; dyi; P, Vi @, qu} (13.14)
for the liquid throughput: {Apy; d, pr, vi; @, qu} (13.15)

Ap - pressure drop of the respective medium in the propulsion jet nozzle of diame-
ter, d, in the mixing chamber of diameter, dy; q — throughputs; p and v densities
and kinematic viscosities of the respective medium. (Gas: without subscript, Liquid:
subscript L). The following pi-sets result:

4
for the gas throughput: {Eu = ApdzM , L Re= qé } (13.16)
pg” T L Viiu
Ap, d*
for the liquid throughput: {Eu, = Py 5. qi, Re = i} (13.17)
At "L

Measurements have shown that Re is irrelevant in the range of Re > 10*. Therefore,
in both cases, q/qy is the only process number effecting Eu; see Fig. 73.

b) The sorption characteristic of an injector is formed with intensively formulated
process parameters. The gas throughput, q, will be replaced by superficial
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Fig. 74 Sorption characteristics of a slot injector of industrial-
size (sketch) in dependence upon the coalecence degree of the
system; from [93].

velocity, v = q/D?, since it has proved suitable for the correlation of k;a values
in laboratory bubble columns: kja/v = const. (see Example 10, bubble
column). Following the sorption characteristics of a mixing vessel, instead of
the liquid throughput, q;, we will use the power of the liquid jet, Pr.= Ap;q;,
per gas throughput, q: P1/q [93]. Including the physical parameters, the follo-
wing relevance list results:

{kia/v; p, v, D, S;; P1/q, g} (13.18)
This leads to the following pi-set:
{(kea/v)", (Pr/q)", Sc, Si} (13.19)

pi-numbers indicated by " have the following meaning:

I 2.1/3
(kpa/v)* = %a (v@) = Y- sorption number
(PL/q)* = chl/; = X -dispersion number
p(ve)

The sorption characteristics of an industrial-sized slot injector were measured in a
bubble column of technical size (3° x 8 m), as dependenent on the common salt
(NaCl) content, this influencing the coalescence behavior of the material system, see
Fig. 74. The results demonstrate that already small amounts of cooking salt (5 g/l £
0.5 %) suffice to increase the absorption rate by ca. 30 %. The following correlations
were found:
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g NaCl/l
0 Y=24x10"°X"*
3 Y=22x10°Xx""
5 Y=20x10"°X"*

10 Y =15x10"°X%*"

When the coalescence of the primary gas bubbles is more strongly suppressed, the
power input of the propulsion jet (P/q) is more efficiently utilized. The above table
shows how with increasing salt concentration (increasing suppression of coale-
scence), the power of X also increases.

In the following, it will be explained why these characteristics can be used solely
as design data for optimizing the running conditions of this particular size of injec-
tor and why they are certainly not suitable for a scale-up of this device.

In fact, the concept of the quasi-homogeneous gas/liquid mixture, on which also
the formulation of the target pi-number Y = (kia/v)" with intensity quantities is
based, and which was fully verified in bubble columns with perforated plates as gas
distributors, proves to be totally inappropriate when injectors are used as gas disper-
sers. The explanation for this fact is that in the case of injectors the coalescence
takes place both in the free jet of the G/L dispersion and at its disintegration into a
bubble swarm, while in the case of gas distribution with perforated plates this pro-
cess has already been completed just above the perforated plate.

This is verified by the measuring data obtained in a column of 1.6 m &, in which
a slot injector was installed with a bottom clearance of 1 m and an angle of 25°
towards the bottom. The liquid head H above the injector was varied in the range
H = 1-7 m. It is shown that the influence of the bubble coalescence in the G/L free
jet on the mass transfer — which occurs in a short distance from the nozzle orifice —
is equilized only after H = 3 m; see Fig. 75. This finding proves that the pi-set, eq.
(13.19), is not complete but has to be widened by a pi-number which essentially
contains liquid height H. It can be formulated by H" = H (g/v?*)'/°.

5
H[m] 10-4 H*
1 Y 0 1.0 2.14
T
450 107 /
\ " 70 150 A
e Y nme
s
10" P -
X
5 S B
4 5
10 2 5 10 2 5

Fig. 75 Dependence of the sorption characteristic Y (X) on the
liquid head above the injector [93].
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Furthermore, it is clear that the scale-up of an injector inherently lessens its effici-
ency. This is caused by the fact that the dispersing effect of the liquid propulsion jet
is restricted to its circumference which, in the case of geometrically similar scale-up,
increases only linearly (u= nd) while its cross-sectional area increases quadratically
(S = 7t d%/4). This means that with increasing diameter of the device, an increasingly
smaller fraction of the liquid throughput is dispersed: The dispersion efficiency of
injectors inherently diminishes with increasing scale.

This is confirmed by mass transfer measurements conducted with three differen-
tly shaped slot injectors, see Fig. 76. Two of them have been geometrically similarly
scaled up (scale u=1: 2). The smaller one (d = 2 cm &; o signs) was installed in a
bubble column of D = 1.6 m, the larger one (d = 4 cm &; A signs) in a bubble
column of D = 2.8 m. In both cases, the liquid head above the injectors was equal
(H =7 m). Both injectors were attached to the vessel wall with a bottom clearance of
1 m and inclined with an angle of 25° and 35°, respectively, towards the bottom. In
this manner was ensured that the free jet desintegrated into a bubble swarm just
above the bottom. The result of these measurements is represented as Y(X) in Fig.
76. It proves that the larger injector has an efficiency which is approximately 30 %
lower than the smaller version thereof. A correlation of both of these straight lines
can be obtained by the representation: Y [d (g/v*)"/**"* = f (X).

A solution to this problem was to avoid scaling-up under geometrically similar
conditions and to increase only the diameters and not the lengths of the mixing
chamber by a factor of 2. As a result, all angles are doubled: the shear rates are
enhanced and the free jet fans out more which further suppresses coalescence. The
result (d = 4 cm @&; x signs) shows that this injector is, at last from X = 2 x 10° on,
equal to the small one. The positive aspects of this scale-up approach are counterac-
ting the negative ones discussed before.

An enlargement of an injector is necessary if it is to be implemented in waste
water treatment plants. In this case it must be prevented that the propulsion jet
nozzle is clogged by solid particles contained in the waste water.

Last but not least, the influence of bubble coalescence in the treatment space
should be addressed. The pi-set for the sorption characteristic only takes account of
gas dispersion and not of bubble coalescence in the treatment space. According to

2 5 10° 2 5

Fig. 76 Sorption characteristics of three slot injectors of diffe-
rent shape and size (explanation in text); from [93].
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Y \350

Fig. 77 Influence of the inclination angle of the free jet on
bubble coalescence and, consequently, on Y(X); from [93].

the laws governing the free jet, the free jet of the G/L dispersion sucks in the liquid
which surrounds it and in succession it loses its kinetic energy and decomposes into
a gas bubble swarm. This process is extremely scale dependent and would need to
be considered in a separate relevance list in which all the relevant geometric param-
eters are included.

To give an example of the dramatic influence which the geometric parameters
can have on coalescence behavior, Fig. 77 shows Y(X) correlations for the industrial-
size slot injector which were obtained in a vessel of 32 x 8 m water height. The
injector was positioned 1 m above the bottom at the vessel wall in such a way that its
axis formed an angle of 0°, + 35° resp. — 35° with the horizontal. Only in the last
case, the free jet was pointed towards the floor and decomposed into the bubble
swarm just above it. Near the floor, the suction of the free jet is weakest on account
of bottom friction. Furthermore, the bubble swarm which has formed does not exert
a “chimney effect” there. Consequently, liquid entrainment into the free jet is sup-
pressed at exactly that point at which it would be particularly supportive of coale-
scence on account of the weakened kinetic energy of the free jet.

Therefore, the sorption characteristics Y(X) presented in Fig. 74-77 can only be
used as design data for the injector type measured in the respective case. They can
not be used for scale-up!

In view of the fact that injectors exhibit favorable characteristics for G/L contac-
ting which makes them superior to stirrers with respect to power consumption, sys-
tematic research in this area would be most desirable. However, it has been pointed
out that it is necessary to perform the measurements at least in the final stage in
full-scaled plants in order to obtain reliable information on the bubble coalescence
in the respective treatment space.

The data presented in Fig. 77 deal with flow states, these being far more complica-
ted than those encountered in the ventilation technique. It would certainly be of
interest to examine which tips and statements can be delivered here by the Compu-
tational Fluid Dynamics (CFD)!
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Example 39: Scaling up of dryers

Drying belongs to those thermal unit operations in which a simultaneous heat and
mass transfer occurs. Therefore, it is not surprising to learn that this complicated
process has never been treated by dimensional analysis. Instead, intuition and prac-
tical experience are used to construct industrial devices. At the same time, mathe-
matical models existed which treated single process steps (e.g. mass transfer from
solid particles into air stream, heat transfer to the solid particles, product flow
through the dryer, moisture mass bilances, etc.) present in the course of single
drying periods. Today, these aspects can be treated with modern computers using
numerical fluid simulation (CFD).

In 1994, two issues of the magazine Drying Technology were devoted to the dimen-
sioning of dryers [94]. Their content verified the above conclusions.

In his introducing communication, Kerkhof [95] referred to the fact that the sca-
ling up of dryers is made difficult by the non-linearity of the occurring physical pro-
cesses. In addition, he reminded of the simultaneous changes of essential physical
properties due to a permanent change of drying conditions in the course of drying.
In a slow drying process, the heat uptake and the moisture removal are balanced. A
flat moisture profile exists within the particle and the process is governed “exter-
nally”. In a fast drying process, the moisture diffusion to the surface of the particle
is not as fast as is its removal. Within the particle a sharp moisture profile exists and
the process is governed “internally”.

As a measure for the degree with which these states are governing the drying
process, an extended Sherwood number Sh™ is introduced ( called a “modified Biot
number” in [95]):

_k.dp 1

Sh* =GP 'uG 13.22
Deff Ps F:rit ( )

kg gas-side mass transfer coefficient

dp particle diameter

Dy effective diffusion coefficient

PwGs Ps densities of the saturated wasser steam and of the solids

Fri mass portion of the moisture in the solid particle

As a rough estimate, the border line between both states will lie at Sh™ = 1.

In a spray drying process, the determining dimension is the particle diameter, d,,.
With d, = 0.1 mm and assuming conditions usually prevailing in spray dryers,
Sh™ = 70. Therefore, this process will be diffusion-limited, that is “internally” gover-
ned.

Genskow [96] pointed out that a correct scale-up is of higher importance for a
drying process than in many other unit operations. This is because this process is
determining a variety of different product qualities, such as density, particle size dis-
tribution, wettability, flow ability, composition, taste, color, and so on. He also con-
cluded that dimensional analysis should be introduced as a compulsory topic in the
study of process engineering.
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After a review of the customary calculation methods [97] for both essential classes
of dryers (convective and contact dryers), the dimensioning methods for spray dryers
[98, 99], fluidized and spouted bed dryers [100, 101, 102], cascading rotary dryers
[103], pneumatic conveying dryers [104], conductive-heating agitated dryers [105]
and layer dryers [106] were presented. They all confirmed the initially made conclu-
sion that the scaling up of dryers is still made today without dimensional analysis
and the model theory based thereupon.

Drying of solvent-moist films and coatings is an important task in the photo-
chemical industry. If the film surface is sufficiently moist, evaporation from a free
surface takes place. Consequently, the drying rate only depends on the mass and
heat transfer at the surface (“surface evaporation”, 1st drying period). After the criti-
cal humidity has been achieved, heat transfer and diffusion within the goods interi-
or govern the drying process (“diffusion-limited”, 2nd drying period).

Y. Sano [107] described the influence of the film thickness, 6, on the drying course
of water-moist polyimide films. In thick films (& = 1 mm), the liquid-side diffusion
plays an important role from the very beginning. The surface concentration quickly
drops off to an equilibrium value and the temperature at the film surface increases
to the drying air temperature, without reaching a constant steady-state goods tem-
perature. A period of constant drying rate does not appear.

The curves of the drying course for thicker polyimide films correlate, if the evap-
orated amount of the solvent is plotted against the Fourier number, Fo. This pi-num-
ber is defined as follows:

Fo — Xa _ momentary position on the belt x thermal diffusivity

5 v (layer thickness at the beginning)2 x Delt velocity

(13.23)

From this relationship, the belt velocity of the dryer, necessary to achieve a certain
degree of moisture, can be predicted.

In contrast, thin films (8 = 50 wm) display, at the beginning of the drying process,
a period of constant drying rate at which the evaporation takes place from the free
liquid surface. Only when the film is impoverished on solvent, drying is governed
by diffusion through the polymer matrix.

H. Jordan [109] experimentally investigated the drying course of a tetrahydrofu-
ran/cyclohexane-moist film. The following assumptions were made:

1 The mass transfer rate is essentially dependent upon the degree of moisture
F" = F/F,. A diffusive mass transfer of solvent exists within the polymer film,
whereby the diffusion coefficient depends on the degree of moisture, D(F).
(Later on, this situation will not be considered.)

2. The film base is impenetrable for the solvent, mass transfer occurs solely into
the gas space.

3. Because the solvent transfer within the polymer film is rate determining, the
temperature field within the film remains practicaly constant and equal to
the temperature on the film surface.

4. The incoming drying gas is solvent-free. Outside the laminar boundary layer
the solvent concentration is practically zero.
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The course of drying is described by the following parameters:

Target quantity:
Influencing parameters:

geometric:

material:

process related:

degree of moisture F~ = F/F,

film thickness of dried film, &

film length, L

densities of gas, p, and of solvent, p;
kinematic viscosity of gas, v

heat capacities of gas, C,, and of solvent, Cpp
thermal diffusivity of gas, a

diffusion coefficient of solvent in drying gas, D
mass transfer coefficient of solvent, k.

vapour pressure of solvent, pp

evaporation enthalpy of solvent per unit mass, AH
gas throughput, q

pressure in gas space, p

gas temperature, T

duration of drying, t

The relevance list therefore consists of 17 parameters:

{F;8,L;p, pr. v, Cp, Cpr, @, D, ki, pr, AH; p, q, T, t}

(13.24)

In connection with the dimensional system [M, L, T, ©], 13 pi-numbers will be pro-
duced. To facilitate the dimensional analysis, six of them can be anticipated as trivial

pi-numbers:

{F"; 8/L, pi/p, Cy1/Cp, PL/P, v/D}

(13.25)

v/D = Sc — Schmidt number. The reduced relevance list only contains eleven param-

eters:
{8 p, v, ki, ¢, a, AH, p, q, T, 1} (13.26)
p s} t T v k. Cp a AH p q
M 1 0 0 0 0 0 0 0 0 1 0
L -3 1 0 0 2 1 2 2 2 -1 3
T 0 0 1 0 -1 -1 -2 -1 -2 -2 -1
() 0 0 0 1 0 0 -1 0 0 0 0
M 1 0 0 0 0 0 0 0 1 0
3M+L 0 1 0 0 2 1 2 2 2 2 3
T 0 0 1 o -1 -1 =2 -1 =2 2
e) 0 0 0 1 0 0o -1 0 0 0 0
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From this 11 — 4 = 7 pi-numbers result which can be combined to form known or
practical pi-numbers (right hand side):

I, = g—} IMa/v= g—;[ = Fo (Fourier)
kt k &
I, = % I,I1,a/D = % = Sh (Sherwood number)
_ Cpt2 T -1 ki
H3 = 62 H3 H2H5 = m
I, = g—;t 1'[;11'[1 =¥ = Pr (Prandtl number)
AHY -1 _ AH
HS = 82 H5H3 = ﬁ
P
Ptz - p
II, = p? ILIL, = pAH
=4 Jen=3 = Id hl
I, = 5 LI, /L=t = Re (Reynolds-Kennzahl)

The complete set of 13 pi-numbers therefore consists of:

target number: F

geometric pi-number: o/L

material pi-numbers: pL/P, Cp,L/Cp, PL/P> Sc, Sh, ki/AH, Pr
process related pi-numbers: Fo, AH/C,T, p/pAH, Re

In the diploma thesis conducted by Jordan [109], concerning the drying of tetrahydrofu-
ran/cyclohexane-wetted polyvinylbutyral films, the influence of only a few of the given
parameters, namely 8/L, Re, AH/c, T, on the dependence F (Fo) could be experimentally
examined. Their influence was then taken into account by simple power products, Fig.
78.

Example 40: Scale-up of a continuous, carrier-free electrophoresis

Electrophoresis makes use of differences in the electrophoretic mobility of electri-
cally charged particles (biomolecules, micro-organisms etc.) as a means to separate
them. For this purpose, a homogeneous, rectified electrical field is used. Thanks to
the excellent resolution and mild operating conditions, this is currently the best ana-
lytical method for protein separation, purification and characterization. It is also
used as a preparative separation method which allows a few grams per hour to be
purified.
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Fig. 78 The correlation {F", Fo, 8/L, Re, AH/c, T} for the
discussed material system

In the case of carrier electrophoresis, a sheet of paper, starch, polyacrylamide or
agarose gel or similar materials, where the respective solid phase is saturated with
buffer solution, are placed between the electrodes in order to generate a homogene-
ous, rectified electrical field. The mixture of substances to be separated is supplied
as a single spot and the individual components are then separated in the course of
time. Carrier electrophoresis is therefore a discontinuous separation process.

Carrier-free, continuous electrophoresis is utilized for preparative work [110]. In
this process, the two electrodes form a parallel, plane slot or annulus of a few mm to
a number of cm in width through which the buffer solution migrates. The material
mixture to be fractionated is injected into the carrier solution at one point along this
slot and, after its resolution into separate fractions, is then removed with the buffer
solution at several points along the slot, see Fig. 79.

Before compiling the relevance list for this process, it must be considered in grea-
ter depth:

This resolution is characterized by a bandwidth, b (which is as small as possible),
and a clearance, s, between the respective bands (which is as large as possible). Both
parameters are dependent upon the same influencing variables. The resolution effect
is therefore defined as the quotient s/b and is taken as the target number of the pro-
cess.

One of the main material-related parameters will be electrophoretic mobility, u. It is
defined as the velocity, v, of the particles in relation to the electrical field strength, E.
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Fig. 79 Sketch of a continuous, carrier—free electrophoresis cell

It results from the balance between the electrical field force, F,, and the frictional
force, F.
The following is valid for electrical field force, F:

Fa=ezE (13.27)
where e [Coulomb = A s] is the electrical charge, z the number of charge carriers per
particle (e.g. biomolecules) and E [V m™] the electrical field strength. The following
is valid for frictional force, Fr:

Fi=6mruv (13.28)

where 1 is the particle diameter and u the dynamic viscosity of the medium.
The following results for electrophoretic mobility:

__€ez
“Gnru (13.29)

i<

M:

Furthermore, it is important to know that electrical power is fully converted into
heat. In turn, this causes convective mass flows which disrupt the fractionation pro-
cess.
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We are going to consider two different operating modes. In the first, a creeping

flow predominates between two plane-parallel electrodes. The electrodes are not coo-

led in this case; consequently AT is not a freely selectable process parameter. In the
second operating mode, in contrast, the operating conditions are those of the so-
called Biostream separator.

Case 1: Creeping flow
This boundary condition has the following consequences for this problem relevance

list:
1
2
3

The density, p, as such, does not play any role.

The specific heat, Cp,, must be formulated as per unit of volume: pC,.

The temperature coefficient of density, By, only acts in conjunction with gra-
vitational acceleration, g, and must be combined with the density: pgfo

The influencing variables of this process are therefore:

1
2

Geometric parameters: Characteristic length of the channel, L

Physical properties: The dynamic viscosity w of the buffer solution; the diffusi-
vity D of the substances to be separated in the buffer solution; pgf, the spe-
cific heat pC,, and the thermal conductivity k. (These three quantities are the
only ones which contain temperature in their dimensions; therefore we will
formulate them as quotients to obtain k/pgf, and the thermal diffusivity, a =
k/pC,). The electrical properties are electrical conductivity, kg (current den-
sity/electrical field strength), and electrophoretic mobility, u.

Process-related parameters: liquid throughput, q, and electrical tension, U < E
L, because this, in contrast to E, is a directly adjustable process variable.

The relevance list of the problem is therefore:

{s/b; L; w, D, k/pgPo, @, ke, W; q, U} (13.30)

Without the (dimensionless) target number s/b, the dimensional matrix is:

u L D w  k/pgPo a ke q u
M 1 0 0 -1 0 0 -1 0 1
L -1 1 2 0 3 2 -3 3 2
T -1 0 -1 2 -1 -1 -1 -3
I 0 0 0 1 0 0 0 -1
Z; 1 0 0 0 0 0 1 0 0
Z, 0 1 0 0 1 0 -2 1 0
Z3 0 0 1 0 1 1 0 1 1
Zy 0 0 0 1 0 0 2 0 -1

Z,=M+1, Z,=3M+L+2T-1;, Z3=-M-T+1;, Z,=1
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This dimensional matrix leads to the following pi-set:

2
ket ge ol g 9 _p. o oUn
IT, :m, IT, :B:Le, II; = ueuz, I1, :m:Bo, I1 =7
Bo and ITs are the two process numbers.
1, = Le (Lewis number) and 111" =k (Ka)"
2 = Le (Lewis number) an 1L —m(v>
are the two material numbers, while the combination of numbers
3
- !
I, 1H3 —PePLL B D2 L 2 = ,Gr"
Ly

provides a modified Grashof number, “Gr”.
Taking account of these alterations and the addition of the target number s/b, the
above pi-set is as follows:

U p1’ k . k A\ B
$:1% = Bo; T“;ipgfuz =260 i 5D (%) : p=1e (1331
It is apparent that a change in scale, while keeping s/b= idem, implies the retention
of idem for the mechanical process number Bo and, therefore, q o< L, i.e. an increase
in q causes a corresponding increase in scale. However, this condition means that
the numerical value of “Gr” is changed very substantially during scale-up. This
dimensionless number could only be kept idem by changing the physical properties
and this, of course, cannot be done.

A way out, which has frequently been considered but, understandably, still has
not been realized, would be to eliminate the influence of “Gr” by exclusion of gravity
in the “Spacelab’. The efforts to suppress smearing of the individual material bands
by superimposing a shear flow crosswise to the volume flow in the annulus between
the concentric electrodes would seem to be more an interesting alternative.

Case 2: The Biostream Separator
Indeed, the “Biostream Separator” [111] operates according to this principle. The
device consists of two concentric cylinders; the inner one is made to rotate in order
to generate a Couette flow. We are no longer dealing with a creeping flow, therefore
the liquid density, p, is not negligible. The number of process parameters is increased
from two to four. These are (1) the rotational speed, n, of the inner cylinder. (2) In
addition, as a result of the possibility of cooling the outer cylinder wall, the tempera-
ture difference, AT, is an additional process parameter which is freely adjustable.
The relevance list which has been extended in comparison to Case 1 now beco-
mes:

{s/b; L; u, D, k/pgPo, a, ket, w; q, U, n, kAT, p}

The extended dimensional matrix supplies the three additional dimensionless num-
bers:
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2 2
_nL". _kAT L. _pD_ 1!
m =ol . =T 8:%:&

6= "D 7=

To simplify test planning and execution, the complete pi-set — i.e., the already obtai-
ned numbers I1; to ITs and the three numbers Il to I1g given above — is converted,
as follows, to more sensible process and material numbers:

Target number: IIy=s/b

Process numbers:

2

for n: .10, = % = Re (Reynolds number)
for q: I, = % = Bo (Bodenstein number)
for E: I, = %
3
for AT: H;1H7 In, = gBA# = Gr (Grashof number)
v
Material numbers:

I1, = { = Le (Lewis number)
H;l = 75 = Sc (Schmidt number)

0,5 _ k k_el 0,5
I, 10, 7—prDu(M) and

-1 _ uLGz _ .

I, Il = AT = Br (Brinkman number)

The target number is dependent on four process numbers and three pure material
numbers. Since the rotation of the inner cylinder generates a negligible “heat of
agitation”, the last number, the Brinkman number, can be considered to be irrele-
vant and can therefore be deleted.

Model tests employed to determine scale-up rules are, of course, performed with
the same material system as that used in the prototype. This is because any altera-
tion of a physical characteristic, e.g. the dynamic viscosity, automatically changes
other physical properties, e.g. electrophoretic mobility, u.

In the model apparatus, it will be possible to adjust the four process numbers
independent of each other without any problems. In this way, their influence on s/b
will be clarified and optimum process conditions for the desired separation opera-
tion will be established. (We would like to assume that, in these tests, it will also be
possible to determine the influence of Gr on s/b within certain limits by altering
AT)



13 Selected Examples of the Dimensional-analytical Treatment

On the next-larger model scale, the process numbers for n, q and E can also be
set to idem without any problems since they contain clear instructions as to how the
respective process variables have to behave in the case of a change in scale. The
adjustment of Gr = idem, in contrast, will be problematic, since doubling the slot
width makes it necessary to set a temperature difference which is smaller by a factor
of 8 on account of AT o L2, As a result, the heat produced in the annulus can no
longer be removed.

As a last resort, the cooling surface area can be increased. In [112], the slot be-
tween the electrodes was 6 mm wide and this was transformed into a heat exchan-
ger. It consisted of teflon capillary tubes (d; = 0.4 mm, d, = 0.7 mm) aligned and
spaced by woven Teflon mesh. 5 layers of tubes were separated and spaced by 6 lay-
ers of mesh. The bed performs cooling and, at the same time, suppresses the con-
vection.

In [139] a new design of an electrophoresis cell with a flat rectangular chamber is
presented in which the smallest cell dimension is arranged parallel and not perpen-
dicular to the electric field. It is claimed that this arrangement allows a simple scale-

up.
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14
Selected Examples of the Dimensional-analytical Treatment
of Processes in the Field of Chemical Unit Operations

Introductory remark

Chemical reactions obey the rules of chemical thermodynamics and chemical reac-
tion kinetics. One can represent them easily in a dimensionless space. However, if
they take place slowly and without significant heat of reaction in the homogeneous
system (“micro-kinetics”) they are not subject to any scale-up rules.

Nontheless, such a reaction course occurs only very infrequently in chemical reac-
tion engineering. Most chemical reactions take place in heterogeneous material sys-
tems (G/L, L/L, G/S, L/S, G/L/S) and generate considerable amounts of reaction
heat. Consequently, the genuine chemical action is accompanied by mass and heat
transfer processes (“macro-kinetics”) which are scale-dependent. The course of such
chemical reactions will be similar on a small and large scale, if the mass and heat
transfer processes are similar and the “chemistry” remains the same.

In a continuous reaction process, the actual residence time of the reaction part-
ners in the reactor plays a major role. It is governed by the residence time distribu-
tion of the reactor which gives information on back-mixing (macro-mixing) of the
throughput. This emphasizes the interaction between chemical reaction and fluid
dynamics.

Chemical reactions exist in which mass and/or heat transfer represent the rate-
controlling step. If both transfer processes occur simultaneously, special scale-up
problems may arise because they obey different laws; see the reaction in a catalytic
packed-bed reactor, Example 41/2.

From the point of view of dimensional analysis, a chemical engineering problem
presents itself with the appearance of chemical parameters containing an additional
base dimension, namely the amount of substance N in their respective dimensions
(base unit: mole). Consequently, we then have to deal with a 5-parametric dimensio-
nal system [M, L, T, ©, N].

Example 41: Continuous chemical reaction process in a tubular reactor

Historical credit goes to Gerhard Damkdhler (1908-1944) who was the first to use the
theory of similarity [113] to investigate a chemical process in conjunction with mass
and heat transfer. In a purely theoretical way he examined the conditions under
which scale-up would be possible in the case of (inevitably) partial similarity and he

177



178

14 Selected Examples of the Dimensional-analytical Treatment

checked the consequences which would result from such a procedure. However,
before analysing his method, we shall discuss this problem from the point of view
of dimensional analysis.

1. Homogeneous irreversible 1st order reaction
A homogeneous, constant-volume chemical reaction taking place in a tubular reac-
tor is influenced by mass and heat transfer processes. The flow condition is descri-

bed by
{vd L p u} (14.1)

(v — flowrate, d, L — diameter resp. length of the tubular reactor, p, w — fluid density
resp. viscosity). All physical properties are related to the known inlet temperature
Ty. In contrast to the continuous reaction in the catalytic packed-bed reactor — see
section 2 — it is assumed here that c and T differences in radial direction are negligi-
ble (plug flow).

The chemical reaction and its conversion are characterized by the inlet and outlet
concentrations ¢;, and coy, as well as by the effective reaction rate constants keg. It
should be noted that the reaction order — here 1st order — governs the dimension of
ko! At the temperature field actually predominating in the reactor, the effective reac-
tion rate constants kg in the reactor will adjust themselves in accordance with
Arrhenius’ law:

kegr = ko exp(E/RT) (14.2)
The mass and heat transfer is described by
{D, Cp, k, cisAH, To, AT} (14.3)

(D — diffusion coefficient, C, — heat capacity, k — thermal conductivity, c; AHg — heat
of reaction per unit time and volume, T, — inlet temperature, AT — temperature
difference between fluid and tube wall). The complete relevance list is therefore:

{v.d, L, p, W, Cin, Cour> Ko, E/R, D, Cp, k, c;inAHg, Ty, AT} (14.4)

Only 9 numbers are formed from these 15 dimensional parameters if the amount of
heat, H, is added to the five primary quantities [M, L, T, Q, N] as the sixth base
dimension: 15-6 = 9. If L/d, cout/Cin, E/RTy, and AT/T, are anticipated as trivial
numbers, the other five pi-numbers can be obtained using the following simple
dimensional matrix:
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p L ko To c.AHg v u D C k
M 1 0 0 0 0 0 0 0 -1 0
L -3 1 0 0 -3 1 -1 2 0 -1
T 0 0 -1 0 0 -1 -1 -1 0 -1
() 0 0 0 1 0 0 0 0 -1 -1
H 0 0 0 0 1 0 0 1 1
Z, 1 0 0 0 0 0 1 0 -1
Z, 0 1 0 0 0 1 2 2 0 2
Z3 0 0 1 0 0 1 1 1 0
Z4 0 0 0 1 0 0 0 0 -1 -1
Zs 0 0 0 0 1 0 0 0 1 1

Z,=M; Z,=3M+ L+ 3H; Z3=-T; Z,=0; Zs=H

The following dimensionless numbers result:

I, = LLkO = (ko )" (mean residence time T = L/v at pipe flow!)
m,=— = (ko T Re L/d)™
2 hdk, (ko T Re L/d)
;= ﬁ = (ko T Re Sc L/d)™"
C,T
I, = Ci)n APH(; =Da™' (Da — Damkshler number)
ITs KT, = (kot Re Pr Da L/d)™

-0
cinAHRd k,

The power products formed with the aid of the dimensional matrix can be traced
back to known, mostly named numbers (Re, Pr, Sc). The only new dimensionless
number here is the Damkohler number, Da, which will be discussed later. The num-
bers obtained, together with the four anticipated trivial numbers, give the following
dimensional-analytical framework:

{L/d, cout/Cin, E/RTo, AT/ To, kot, Re, Sc, Pr, Da} (14.5)

The pi-space under consideration is described completely by this pi-set.

It is obvious that when scaling up chemical reactors it is generally unacceptable
to change the reaction temperature T, because this would impede the reaction
course (and hence ko) or at least the selectivity of the reaction. For the same reason,
it is not possible to vary the physical or chemical properties of the reaction partners.
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If scale-up of the tubular reactor of the given geometry (L/d = idem) is performed
at Tp and AT/T, = idem, taking account of these restrictions, the kinetic and material
numbers E/RT,, Da, Sc, Pr remain unchanged. Therefore, to attain a specified
degree of conversion Cyy¢/Cin = idem, it is only necessary to ensure that the other two
numbers Re = v d p/u and kgt = ko L/v are adjusted in such a way that they remain
idem. However, it is immediately clear that this is an impossibility in the case of L/d
= idem because

vd — v L=idem and L/v=idem

cannot be fulfilled simultaneously in the tubular reactor! (In a mixing vessel this
problem does not exist.)

In the scale-up of a tubular reactor, the problem is to increase the flowrate q < v
d? by a factor n (not to be confused with the scale u!) while retaining the chemical
efficiency (yield, conversion, selectivity, etc.):

qr=nqu — vrdr®=nvydy’

How does this demand react with the conditions Re = idem and kqt = idem?
Reevd=idem — dr=ndy; vr=vy/n

It follows that
Vr=n*Vy andhence tr=n’ty (T=V/q)

The volume of the full-scale facility is n’ times larger than that of the model. Howe-
ver, the flow through it is only n qy , consequently the residence time t is n* times
larger. From kgt = idem it follows that the reaction rate constant k, in the prototype
would be smaller by a factor of n* and this contradicts the precondition stated above!

At this point, one will ask whether or not the demand for Re = idem is justified.
In the last instance we are dealing with a fast reaction if we have selected a tubular
reactor. Consequently, the flow through this pipe reactor will certainly be turbulent.
It is well known that Re only has a slight influence in the turbulent flow regime!

2. Heterogeneous catalytic reaction of the 1st order

Let us now consider a “catalytic packed bed reactor”, i.e. a tubular reactor filled with
a grained catalyst through which the gas mixture flows. With the particle diameter
of the catalyst, d,, an additional dimensionless number d,/d is added to the pi-
space; the Reynolds number is now expediently formed with d,. The reaction rate is
related to the unit of the bulk volume and characterized by an effective reaction rate
constant ko .= k”. The thermal conductivity (k) also has to be valid for the gas/bulk
solids system and diffusion can be considered as being negligible (Sc is irrelevant).
The complete pi-space is therefore:
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{Cout/Cin, L/d, dp/d, E/RT,, AT/ Ty, k1, Re, Pr, Da} (14.6)

Since the diameter of the catalyst grain has a considerable influence on the reaction
rate, its variation will not be permitted during scale-up; this means that the geomet-
rical similarity will inevitably be violated by d,/d # idem. Therefore, scale-up of the
tubular reactor filled with catalyst is, at best, possible through adherence to partial
similarity whereby it is necessary to check whether violation of geometric similarity
alone is enough to guarantee scale-up.

The scale-up problem under discussion is completely covered by the given pi-
space. However, it can be considered in greater depth by compiling fundamental
differential equations which mathematically formulate the conditions for preserva-
tion of mass, impulse and energy (c.f. statement in Fig. 6).

G. Damkdhler [113] used this possibility to develop Navier-Stockes differential
equations of the mass and heat transfer for the case of an adiabatic reaction. Analyt-
ical solution of these differential equations is not possible. However, if they are
made dimensionless, it becomes apparent that the pi-space is formed by the five
dimensionless numbers listed below:

Re = %

I= li, — k 7 (for the pipe flow)

sz*DLz —k Lyl ¥ =k tReSc

1 = k*;nglng = CglCA;; kL_pak't

v =Ke kATEIRd - CF;%APPTI: kL vlp % —Dak'tRe Pr

Although Damkéhler traced numbers I to IV back to the above combinations of
named dimensionless numbers known at that time, numbers I to IV have come to
be known as the four Damkéhler numbers Da; to Da;y in chemical literature. We
will not identify them in this way, instead we will only refer to the new, genuine reac-
tion kinetic pi-number

C, AH
pC

7% = Da (14.7)

as the Damkdohler number Da.

In fact, the advantage of these combinations of numbers obtained by making dif-
ferential equations dimensionless, over those combinations delivered by dimensio-
nal analysis, is that they characterize certain types of mass and heat transfer, respec-
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tively. For example, III represents the ratio of the reaction heat to heat removal by
convection, while IV expresses the ratio of the reaction heat to heat removal by con-
duction.

G. Damkdhler bases his analysis of the scale-up problem relating to the catalytic
tubular reactor on the following pi-set (D and hence number combination II are
irrelevant):

{L d, vdp 'p K¢ AH.L k*cmAHRdz}

& d w0V TpC Ty T KT,

(14.8)
Re 1 111 v

He knows that he may not vary the temperature T, and d, if he does not want to
risk influencing the chemical course of the reaction. Consequently, as already men-
tioned, geometric similarity is inevitably violated during scale-up on account of d,,/d
# idem. Damkéhler is therefore prepared to waive adherence to L/d = idem as well.
However, he points out that this will necessarily lead to consequences for heat trans-
fer behaviour. In this case, he uses the hypothesis that thermal similarity is guaran-
teed if the ratio of IV to III (heat conduction through the tube wall to heat removal
by convection) is kept equal:

* 2
v _kc AH d" pC,T;v  pC,vd

d— .
M= kT, Ko AH,L kL = reL= idem

Scale-up must therefore be effected in the pi-space {k't, Re, Pe}. It then follows
that:

Re =idem — v=idem
kK't=k" L/v=idem — L= idem
Pe =idem — d = idem

The requirement d = idem means p = idem and this makes a change in scale impos-
sible.

Result: Abandoning geometric similarity is not enough to guarantee chemical
similarity which requires that T, and hence k™ be idem.

Damkdhler now proposes to abandon not only geometric, but also fluid dynamic
similarity (Re = irrelevant). The scale-up should depend exclusively on thermal and
reaction similarity. This means that, apart from k™, only III and IV must be kept
constant. The pi-space is then:

« * * 2
{kL k c,AH,L k c,AH_ d } (14.9)

VopC, Tyv’ kT,

Since, according to Damkdhler, heat conductivity is approximately proportional to
the flowrate (kegr o< v) in the turbulent flow regime and, from a certain small d,/d
ratio, independent of it, the following scale-up rules result from the above pi-space:
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Daj=k't —L/v =idem
Daj — L/v =idem
Dayy — d*/k o< d/v=idem

In conjunction with the flow rate equation and the enlargement factor for the liquid
throughput n = qr/qy, it follows that

Dayy =idem — dr=n*dy aswell as vy = n'/? vy

Da; = idem as well as Dajy=idem — Ly=n'?Ly
Consequently,

(L/d)r = n'* (Ljd)u (14.10)
and, in conjunction with Ap e L v?, the following is valid

Apr=n®? Apy

If one assumes that both hypotheses (irrelevance of both geometric and fluid dyna-
mic similarity) are applicable, this result shows that the industrial tubulat reactor
would be influenced by a pressure increase. This would not only incur costs but
could also have an unknown effect on the course of reaction. Therefore, tube bundle
reactors are more economic.

Scale-up at partial similarity was discussed in Sect. 6.2. It was pointed out that
various strategies exist and Froude’s method which is based on dividing the process
into parts that can be investigated separately, was presented.

The present example illustrates another method for dealing with partial similarity.
It is based on deliberately abandoning certain similarity criteria and theoretically and/
or practically checking the effects on the entire process. Damkdéhler’s example con-
vincingly demonstrates that valuable information concerning the scale-up of a com-
plex chemical process can be deduced from theoretical considerations alone if the
principles relating to the theory of similarity are used consistently.

However, Damkdhler seems to have been very disappointed with the result of his
study. His conclusions, in [113], as quoted below, cannot be interpreted any other way:

“Although it is basically possible to apply the theory of similarity to chemical pro-
cesses and to scale up one of these processes in such a way that geometric, fluid
dynamic, thermal and reaction-kinetic similarity is retained to a greater or lesser
extent, these transformation processes are only of limited importance. They may be
quite useful for increasing equipment performance two to five-fold but hardly to
much larger amounts. This circumstance is of importance since it is more or less
equivalent to practical failure of the theory of similarity. This, however, was not to be
expected from the beginning, especially in view of the fact that the theory of simila-
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rity proved itself brilliantly in the solution of other heat transfer problems where no
additional chemical conditions had to be fulfilled”.

The results of his studies and the efficiency of methods based on the theory of
similarity have been assessed differently by posterity. If the method shows that
scale-up is not possible, this by no means points to failure of the method but rather
is a valuable indication of the given facts!

Example 42: Description of the mass and heat transfer in solid-catalyzed gas
reactions by dimensional analysis

In this example, the composition of the catalyst surface is responsible for its activity.
Therefore, catalysts are placed on porous supporting material (pellets) which have
specific surface areas of some hundred m?/g pellet. Because the pellet core has the
largest surface area, the reaction predominantely takes place here.

In solid-catalyzed gas reactions the rate equations have to be extended by the
mass and heat transfer terms. The following has to be considered:

1  Diffusion resistance for educts in the gas film and in the catalyst pores;
2 Sorption processes and reaction on the catalyst surface;
3 Diffusion resistance for products in the gas film and in the catalyst pores.

If the reaction proceeds without a change in molar volume, steps 1 and 3 can be
considered as countercurrent diffusion.

In this field, an intensive research has been carried out about 40-60 years ago,
see e.g. [114-118]. The results of these studies are contained in textbooks on chemi-
cal engineering, see e.g. [119-121]. Only those results will be presented and discus-
sed here, which are directly associated with dimensional analysis.

1 Outer transfer processes
The isothermal and the non-isothermal reaction with the diffusion resistance in the
gas film will be treated in succession.

1.1 Surface reaction with diffusion resistance in the gas film

Here, we look at the conversion of a gaseous component A on a non-porous catalyst
under isothermal conditions. In the steady-state, the volume-related rates of the gas-
side mass transfer and the surface reaction are equal to each other:

kGa (CG —Cgs ) = kCS (1412)

kg — gas side mass transfer coefficient; a — surface area per unit volume; k — reacton
rate constant; subscripts: G — gas phase; S — solid phase.
Using this equation, the unknown gas concentration prevailing on the catalyst
surface, cs, can be expressed as
s = 1<Jli(f<aacc = 1+k1/k a‘c
G G

(14.13)
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and the effective reaction rate r.¢ = kcg formulated:

T = l—i—klijkcacc — kg (14.14)
At k/kga << 1, the chemical reaction is much slower than the mass transfer rate. In
this case, concentration difference in the gas boundary layer does not exists. There-
fore, k/kga can be interpreted as the ratio of the reaction rate without transport
limitation (cg = cg) to the reaction rate at transport limitation (cs — 0).

k/kga is also named the 2. Damkéhler number Day;, because in Dayy = k; Lz/ D,
the expression (D/L)L™" can be interpreted as ka: D/L k¢; A/V =a and k; is the reac-
tion rate of a 1st order reaction.

The quotient from the effective reaction rate (r.g) and that (r) without diffusion
control (cg = cg) defines the outer catalyst effectiveness factor, Ney:

k¢
eff G 71 1 1
ke, = ¥19Da, % *ke, ~ 19D, (14.15)

r
— _eff
next - r

Whether r.s is diffusion controlled or not, i.e., whether 1oy = 1 Or Ney; < 1, Tegr can be
ascertained if the measured k value is first multiplied with the (solely known) cg

Teff =T Next = Mext K< (14.16)
and then divided by the maximum attainable mass transfer

kga (cg —cs) at cs =0, i.e. with kga cg

*

T k¢
ff G _
kGeacG - next kG aCG - next DaII (14.17)

10"
Next
m=-1

10°)

0,5

1

2
107

1072 101 10° Dar  10'102 107" MexDay 109

Fig. 80 External catalyst effectiveness factor ney, as a function
of the Damkahler-1l number Da, = k/kga and the reaction order
m; from [118].
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For this purpose the kga value has to be determined separately: a can be measured
and kg can be calculated. Then 1 can be determined from the correlation Ney; (Next
DaH) in Fig. 80.

1.2 Surface reaction with diffusion and heat transfer resistance

In fast exothermic reactions, in addition to grad ¢, also grad T (T # Ts) is present in
the boundary layer between the gas bulk phase and the catalyst surface. For the
outer effectiveness factor 1), this means that

k(T )c

_ eff S
e =T~ K(T,.)c, (14.18)

The quotient cs/cg corresponds to the expression

[ kga—m_ k(T;) k(T.) 1—
e - kGa - ext kGa - next

Da, (14.19)

Coupling of (14.19) and (14.18) gives the sought after correlation between grad T
and Neye

Mew = k(T ) (F ™ Mew D21) (14.20)
The introduction of the Arrhenius term for k(T) and the pi-number Arr = E/RT
gives:

Ny, = exp|Arrg (1- %ﬂ (1-mn Day) (14.21)

For the determination of 1., not only the accessible quantity 1e,; Day; but also Tg/
Ts must be known. This can be obtained by the following reasoning: In the steady-
state, heat removal equals the heat production:

Q/V=ha (Ts-Tg) =reg (-AHgr)  (a=A/V) (14.22)

Resolved after T/ T, the equation reads

T r .(—AH,)
s _ id R
=1+ T _ ha

14.23
Tg G ( )

h can be expressed via analogy between mass and heat transfer according to the
correlation Sh= Nu (Sc/Pr)" as follows:

h=k¢ (k/D) Le™ (Lewis number Le = Sc/Pr)

Now, the reciprocal value of Ts/Tg is formed, see eq. (14.23), and h is expressed by
the just presented correlation:

TG 1
o (-AHg)

n

7 (14.24)
s 14 —eff TR
Tq akG (k/D)Le
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A multiplication of the fraction in the denominator by c¢ finally gives:

T

== ! - 1 = 1 14.25

Te =1 il gy M T 4P Da, (4P
Tgakg (k/D)le " 7 < (/D)g "T "~ kgacg

The fraction surrounded by a box in eq. (14.25) is named Prater number f. It is
formed with the gas-side values (cg, Tg). The fraction on the right-side of the box is
the already known pi-number combination e, Day;. When this correlation is intro-
duced into the equation for 1, then it follows that:

- ol )]0

New exp[ Arrg (1+BnextDan 1)[{(1—n,,Day) (14.26)
Prater number f3 represents a combination of pi-numbers which can be traced back
to the already known ones:

Da -n —(14n)
Danl}ie x Le — PB=DaxLe (14.27)

B

For Da see the definition, eq. (14.7). From this it follows that the name “Prater num-
ber” is superfluous.

The eq. (14.26) is represented in Fig. 81 for two different Arr values. It can be
seen that the outer effectiveness factor 1y can attain values of >> 1. In such cases
the reaction takes place on the surface of the catalyst at Ts>> T. The difference in T
can come to 10-30 K and more.

102
Next __E -
Arr= BT s = 10
1074 B=1,0
0,5
109 0,1
0
0,5\ 0.1
10~ : . .
1073 1072 il 100 1072 101 10°
Next Day Next Day

Fig. 81 Outer catalyst effectiveness factor, Ney;, as a function of
the measurable quantity n.,;Day, for two values of the Arrhenius

number, Arr, and for different values of the Prater number 3 2 Da x
Le—(]+n)
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2 Inner transfer processes
Analogous to above, the isothermal and the non-isothermal reaction will be treated
in succession with respect to diffusion resistance in the catalyst pore.

2.1 Isothermal reaction with the diffusion resistance in the pore
Solving the differential equation for the mass balance at steady-state (output — input
+ disappearance by reaction= 0), see e.g. [119], in a volume element of the pore deli-
vers an equation which describes the change of concentration in the pore as a func-
tion of its length, L:

¢ _ cosh m(L—x) cosh[®(1—x/L)]

8 cosh mL cosh @ (14.28)

where ® =m L =L /k, /D, a dimensionless number named the Thiele modulus,
@, was introduced. This naming is also completely superfluous: It could be replaced
by /Da,.

The effectivenes factor of the pore, 1, is defined simislarly to Ney; and is the ratio
of reg to r without any transport limitation. For a 1st order reaction, a simple correla-
tion between 1, and ® exists, because here r o c holds:

n=&= tanh @ _ f(g) (14.29)
(cs means c at the pore entrance) This correlation is valid for a straight cylindrical
pore. To be also valid for a porous pellet, the molecular diffusivity D must be repla-
ced by D,gin the porous pellet and the influence of the pellet shape taken into consi-
deration by a characteristic length Lc = (V/S)p. Consequently, the modified Thiele
modulus, W, is given by

¥=1Lc,/k /Dy (14.30)

The hitherto made statements are only valid for irreversible reactions of the 1st
order. To obtain an expression which is also valid for optional reaction orders, m, a
modification of the Thiele modulus has to be made:

¥ =L, \/[(m +1)/2)(kyc; /D) (14.31)

If kinetic measurements have been obtained with a certain catalyst, the question
arises as to whether or not these data have been influenced by the pore resistance.
To answer this question, one has first to chose an optional reaction order and to
suppose that the film resistance can be neglected. For a 1st order reaction:

-r=kjcsmp (14.32)

and eliminating the unknown rate constant k; using the Thiele modulus ® we
obtain:

®=L/k /Dy — k =Dg® /L’
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Fig. 82 Catalyst effectiveness factor n, as a function of the
Weisz modulus, W A 1, Day;, and the reaction order, m.

Therefore, it follows from (14.32) that

2 2
ﬁ];:c =n,® = L Y — Weisz-Modul (14.33)
€

Keeping in mind that the Thiele modulus, ® = L /k, /D, can be replaced by ,/Da,,
this means that the naming of Weisz modulus W’ was also superfluous, because ¥’
=1y Day.

The correlation between 1, and W’ as being dependent on the reaction order, m,
is represented in Fig. 82.

2.2 Non-isothermal reaction with the diffusion resistance in the pore

In an exothermal reaction, temperature gradients will arise within the pellet and,
consequently, the temperature of pellet will be elevated compared with its surroun-
dings. As a result, the reaction will be faster than the isothermal counterpart. AT in
the film as well in the pellet can be theoretically predicted and, consequently, the
maximum AT between the outer surface (T;) and the inside of the catalyst (Tj,) cal-
culated, when there c=0:

(T, —Ty)max (—AHj)c

oy DT =B (14.34)

The Prater number {3 — in contrast to eq. (14.25) is related to Ts and not to T — and
the Arrhenius number have a major influence on the development of the T and c
profiles. The pore utilization factor n),, is therefore dependent upon Arr, § and Thiele
modulus @®. The correlation between these four pi-numbers is represented in
Fig. 83. For 1, and @ the following definitions apply:

r 2 2k
— ff — S
N = r(Tes,cs) and ® = I, Dfo exp(—Arr) (14.35)
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Fig. 83 Catalyst effectiveness factor (pore utilization factor), 0,

for two Arrhenius numbers and different Prater numbers f3 as a
function of the Thiele modulus, ®.

However, a comparison of the numerical values of @,  and Arr, established in full-
scale reaction plants for exothermal catalytic gas reactions, has revealed that due to
mostly very low [ values (3 ~ 0.01-0.1), values of 1, > 1 do not appear. This means
that within the paletts larger T gradients are not to be expected.

Finally, a few remarks should be made with respect to the naming of characteri-
stic pi-numbers in the macro-kinetics. Pi-numbers are associated with researchers
names in order to point clearly and easily to a particular dimensionless formulated
context (e.g. Reynolds number). In doing so, it was primarily not intended to high-
light the respective researcher in some manner. Seen from this point of view, the
posthumous naming of the four Damkohler numbers seems unnecessary, particu-
larly because even Damkohler himself referred to the fact that pi-numbers k L/v A
k t and k L?/D had already been introduced before him. Because these two pi-num-
bers are the most important pi-numbers in the field of chemical engineering, their
handy naming after Damkdéhler as Day and Dayy represents no disadvantage. Whether
one can say the same for Prater number and the Thiele and Weisz modulus is a
question which everybody should answer for himself. (For comparison, see the
listing of the important named pi-numbers in the appendix.)

Example 43: Scale-up of reactors for catalytic processes in the petrochemical industry

Today, solid-catalyzed gas reactions are executed to an extent of several billions of
tonnes per annum. To name only a few important examples: Steam reforming of
methane-rich natural gas to “synthesis gas” (H, + CO), conversion of CO with H,0
to CO, + H,, conversion of CO with H, to methane, ammonia synthesis, oxidation
of SO, to SO3 (sulphuric acid production), oxidation of NH; to NO (nitric acid pro-
duction). The world production of ammonia in 1995 amounted to 90 m tonnes and
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of sulphuric acid to 140 m tonnes. Alone BAYER AG, D-Leverkusen, produced
1.000 tonnes H,SO,/day in the early 1990is.

In this specific field, in particular the petrochemical industry is subjected to
gigantism, due to the fact that the investment costs for petrochemical plants do not
increase proportionally but to the 0.7 power of their capacity [122]. It is therefore
profitable to build the production units as large as possible — market permitting.

In the development of these processes and their transference into an industrial-
scale, dimensional analysis and scale-up based on it play only a subordinate role.
This is reasonable, because one is often forced to perform experiments in a demon-
stration plant which copes in its scope with a small production plant (“mock-up”
plant, ca. 1/10-th of the industrial scale). Experiments in such plants are costly and
often time-consuming, but they are often indispensable for the lay-out of a technical
plant. This is because the experiments performed in them deliver a valuable infor-
mation about the scale-dependent hydrodynamic behavior (circulation of liquids
and of dispersed solids, residence time distributions). As model substances hydro-
carbons as the liquid phase and nitrogen or air as the gas phase are used. The opera-
tion conditions are ambient temperature and atmospheric pressure (“cold-flow
model”). As a rule, the experiments are evaluated according to dimensional analysis.

P. Trambouze [122, 123] from Institut Francais du Petrole (IFP) demonstrated on
the basis of three petrochemical processes how “mock-up” plants enabled the acqui-
sition of pertinent data for a reliable scale-up. This work will be presented here in
greater detail because it shows that for a reliable scale-up of industrial plants in
petrochemical industry — whose investment costs per plant often amount to a three
digit million US$ sum - measurements on a large scale are often indispensable,
leaving hardly place for a classical model scale-up. Seen from this point of view, the
quotation in [122] is perfecty understandable:

“In pilot plants, scale-up does not correspond to a change in size that is achieved
by multiplying characteristic dimensions by a factor greater than one.”

1. Hydrotreating petroleum cuts. Catalytic hydrogenation of organic compounds
containing S, N and O, into H,S, NH3 and H,O, respectively, is necessary today for
environmental reasons as well as to protect exhaust gas catalysts in automobiles. It
is performed in catalytic fixed bed reactors through which the gaseous and liquid
phases flow simultaneously in a cocurrent downflow. The flow of the liquid phase
corresponds to the plug flow. Back-mixing is negligible for catalyst bed heights of
> 1m. Problems are caused by a poor liquid distribution that leads to preferential
paths. Certain portions of the catalyst bed may not even be wetted by the liquid.
Reactions may take place in the dry zones involving the gas phase only, these are
faster and liable to give rise to hot spots. Another problem is caused by the broader
residence time distribution, which may have an effect when an extremely high con-
version degree is required in order to remove traces of certain products.

In a mock-up plant the catalyst bed consists of the industrially used catalyst. As
the liquid phase hydrocarbons and as the gas phase nitrogen are used. A geometric
similarity cannot be kept because this would lead to a pilot reactor with the height of
the industrial plant. The capacity of the pilot plant has to be reduced. In order to do
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this, two alternatives exist. The first is to perform an operation with a cocurrent
upflow, this makes sure that the catalyst bed is wetted by the liquid. The second
possibility is to have a downflow operation. In this case the catalyst must be diluted
with inert particles having a much smaller particle size distribution. This signifi-
cantly increases the retention time of the liquid phase and, accordingly, the wetting
of the catalyst.

The first alternative was examined. Measurements confirmed that the hydrodyna-
mic conditions were compatible with the assumptions made for this model.

Recent studies (made public in 1988) revealed that the fixed bed technology was no
longer the best, given the rapid deactivation of the catalyst that resulted from the deposi-
tion of metals contained in the feedstock. The moving bed alternative was therefore con-
sidered and countercurrent flow appeared to offer the optimal technology.

A feasibility study, carried out with mock-ups of various sizes, ensured that the
catalyst bed could flow in countercurrent to the fluids (gas and liquid) and that the
flow of the particulate solids was sufficiently close to plug flow. A moving bed reac-
tor (40° cm x 20 m high) was succesfully operated as a demonstration plant for
several months, whereby different heavy residues were treated.

2. Regenerative catalytic reforming serves to increase the fuel octane number. It is
performed in catalyst fixed beds in the gas phase (ca. 500 °C, p = 10-50 bar). Ther-
mal effects are fairly pronounced during the first phase of the conversion, which
essentially corresponds to the dehydrogenation of the cycloparaffins.

Conventional technology, which has been employed for over 25 years, uses three
or four fixed bed reactors in series, these operating under adiabatic conditions. They
are preceeded by heating furnaces that compensate for the overall endothermicity of
the reaction. Catalyst performance was investigated separately in a pilot plant under
isothermal conditions, employing ca. 300400 g of catalyst.

This process could cope with gasoline demand by only steadily improving the
catalyst stability. Nevertheless, this process would reach its limits if process technol-
ogy would remain unchanged. Consequently, moving bed technology, which allows
continuous or semicontinuous regeneration of the catalyst, was developed.

Before building an industrial plant using this new technology, a number of investiga-
tions were obviously necessary. They had to be performed in mock-ups of different sizes
in order to ascertain that a largely plug flow motion of the catalyst could be achieved.

After regeneration, the catalyst enters the first reactor at the top. It passes through
the reactor by gravity and is then transferred from the bottom of each reactor to the
top of the next by a gas-lift. To minimize the pressure drop across the bed, a cross-
flow technology was adopted: The catalyst flows downwards from the top of the reac-
tor between two concentric cylinders made up of grids, this allowing the radial pas-
sage of the gas phase.

Therefore, it was possible to choose the direction of fluid flow. Firstly, either from
the inside towards the outside or, secondly, from the outside towards the inside of
the reactor. The interactions between the gas phase and the granular solid phase
were liable to create irregularities in the solid downflow. The main risk was that the
catalyst would be plastered against the grid and would no longer be able to move.
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This question was also investigated in differently sized mock-ups, the largest
having the geometry and dimensions of the planned industrial reactor. To reduce
the catalyst and gas throughputs, only a cut-off section of the cylinder was used. The
radial cross-sectional area was made of Plexiglas which permited the observation of
the solid flow by means of a tracer technique (layer of colored spheres). This mock-
up contained a solid volume of 2.5 m”.

As solids, only spheres were used and these served as a support for the catalyst.
The gas phase was air. The operation conditions were ambient temperature and at-
mospheric pressure.

3. Catalytic cracking (cleavage of C—C and C-H bonds in high boiling crude oil frac-
tions to transform long chain hydrocarbons into short chain ones and, consequently,
increase the fuel yield.) In this field, Institut Francais du Petrole (IFP) together with
“Total France” developed a new technique (R2R process) which utilizes a riser and
two regenerators. Because the hydrodynamics of the three phase, gas-liquid-solid
flow inside the riser could not be investigated on a small scale, a large mock-up had
to be build. In addition, an injector was also developed. This introduced the cracking
feed at the bottom of the riser and mixed it as rapidly and uniformly as possible
with the catalyst.

Example 44: Dimensioning of a tubular reactor, equipped with a mixing nozzle,
designed for carrying out competitive-consecutive reactions

This example deals with the dimensioning data for a chemical reactor intended to
perform a homogeneous, competitive-consecutive chemical reaction. The reaction
course is given by:

k, )
A+B —— P (desired)
k, )
P+B —— R (undesired)

This type of reaction is by no means rare. Many chlorinations, phosgenations, and
so on, belong to this type. If a high selectivity with respect to P, Sp, is demanded, P
may not come into contact with B. Therefore, a stirring vessel would be completely
unsuitable for this task! It is recommended to perform this reaction in a continuous
mode and to use a tubular reactor because it exhibits ideal plug-flow characteristics
with respect to macro-mixing (i.e. no back-mixing). Fast micro-mixing of the reac-
tion partners is taken care of by a propulsion jet nozzle installed at the inlet of the
pipe, this impinges the smaller volume flow of B into the larger volume flow of A
(stoichiometrically surplus component). A annular inset is installed at a short
distance after the propulsion jet nozzle in order to prevent a possible back-mixing
eddy which would mix the reaction mixture with the free jet. (This happens if the
free jet is able to suck more liquid from its surroundings than is supplied with it at
the inlet.)
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1B

Fig. 84 Sketch of the propulsion jet
nozzle for a tubular reactor for carrying out
competitive reactions

In experiments [125], a well known azo reaction (conversion of 1-naphthol with
diazo sulphanilic acid into a simple coupled — desired product — and twice coupled
product) is carried out. It allows the quantitative determination of micro-mixing on
a “molecular scale”. Its selectivity is determined following the proposal of J.R.
Bourne [124] with respect to the undesired product, R. Sy is defined by P and R,
which only can be detected analytically, according to the relationship

g = . 2R __ mols B consumed for the formation of R (14.36)
R =™ 2R+P total moles of B consumed '

The reaction engineering task will be to minimize the quantity Sg.
We will start with the following relevance list:
target quantity: selectivity, Sg
geom. parameter: tube diameter, d (as the characteristic length)
physical properties:  ca, Cp; Pa, PB; Va, Va; D
process parameters:  ky, ky; qa, gz.

¢; are the concentrations, p; and v; are the densities and kinematic viscosities of the
educts, D is the diffusion coefficient of A in B, q; are the liquid throughputs and k;
[L* T™! Mol™] the reaction rate constants of 2nd order isothermal reactions.

From this relevance list, first the trivial pi-numbers can be anticipated:

g - A P VA7D k, da

R’ Cngv Vg Vngqu
In the remaining relevance list
{d, g, ps, D, ks, g8}
only pp contains the base dimension [M] and therefore has to be cancelled. Only cg

and k; contain the base dimension [N]; this is eliminated in the combination cgk,.
The residual relevance list is then

{d, D, cgk,, qs}
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The dimensional matrix with the rank 2 supplies two pi-numbers. They are the Rey-
nolds number and the Damkéhler-II number for a 2nd order reaction:

2
. q _dck
Re:ﬁ und Da; = DB 2

The complete pi-set is comprised of nine numbers

c, P, v k, q
A A ‘A D A
{Se: 2 P v gl Re. Day, | (14.38)
For the given reaction in the given material system, four pi-numbers display con-
stant numerical values
Py a D K

A
= const
pB7 Vg Vg kz

Therefore, only a dependence between five pi-numbers has to be investigated:

¢, g
Se :f(ﬁ, i Re Dan) (14.39)

This pi-space can be further reduced if the liquid throughput, qa, forming the jet in
the propulsion jet nozzle, is replaced by an intermediate quantity, jet power per unit
throughput, P/qa. Due to the relationship P = qaAp, P/qa corresponds to the pres-
sure drop, Ap, in the propulsion jet nozzle. The reduction of the pi-space is now
possible because by the introduction of Ap, not only qa is replaced, but also — due to
the intensive character of this variable — d becomes irrelevant and must be deleted.

In order to replace qa by Ap, we combine the Euler and Reynolds numbers accor-
dingly

Apd4 q2 _ Apd2

2
EuRe = =
pq2 VA2 pv2

and eliminate d from the resulting pi-number using Day;:

Apd2 D

A
Ne dzck% y:
p B2

ucgk, =¥

2 -1
EuRe Da Sc= =
The sought after dependence for the selectivity, Sg, of a fast chemical reaction car-
ried in a tubular reactor with a propulsion jet nozzle as a mixing device, is now rep-
resented by only a four-parametric pi-space:

c, P
Se =f (& o ¥) (14.40)

Laboratory tests [125] were performed in glass tubes (d = 3-25 mm) with converging
propulsion jet nozzles manufactured by the Schlick company (d” = 0.3-1.6 mm). qp
formed the propulsion jet. A temperature of 20 °C, pH = 10 and mole ratio of
Z—‘;g—g = 1.05 were kept constant, so that only a further reduced relationship of

Sg :f(g—f;,w) (14.41)
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Fig. 85 Selectivity Sg of the undesired by-product R for a fast

reaction taking place in a tubular reactor with a propulsion jet
nozzle (Fa. Schlick) as mixing device as a function of qa/qs and
W x cg/ca. The upper graph is valid for developed, the lower
graph for suppresed back-mixing.

could be investigated. Test conditions which permitted the formation of a back-
mixing eddy in the pipe reactor and hence back-mixing of R and B were also adju-

sted.
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The correlation between the three pi-numbers in (14.41) is presented in Fig. 85.
The analytical expressions for the two groups of curves are:

without back-mixing: Sr = 1.3 (W x cg/ca) ™ (qa/qe)"* + 0.001
with back-mixing: Sk =5.0 (¥ x cg/ca) ™ (qa/qp)"? + 0.005

Firstly, Fig. 85 shows which P/qa value is necessary to obtain a high selectivity for P
(correspondingly, an equally bad one for R!), whereby this information is scale-inde-
pendent and therefore can be used for scaling up such reactors. Secondly, it is
shown that by suppressing back-mixing it is already possible to obtain the same
selectivity with P/qa values, these being two orders lower.

If these results are considered for the selectivity, Sp, with reference to the desired
product P (in Fig. 85 the selectivity Sg of the undesired by-product is plotted!), it
becomes apparent that this increases with increasing W but decreases superpropor-
tionally with increasing the throughput ratio qa/qg. This is because the propulsion
jet power related to the total liquid throughput Apqg/(qa+qs) decreases with increa-
sing qa/qe-

If the kinetic parameters k;/k, = 7300/1.63 = 4480 and the mol ratio caqa/cpqs =
1.05 are known, it is possible to calculate the selectivities Sg which would result
from the ideal plug-flow tubular reactor and in the completely back-mixed vessel.
The corresponding values are 0.001 and 0.008 respectively. This is in good agree-
ment with the results obtained for high values of ¥ x cp/ca.

Example 45: Mass transfer limitation of the reaction rate of fast chemical reactions
in the heterogeneous material system gas/liquid

To allow a chemical reaction to take place between a gaseous and a liquid reaction
partner, the gaseous component must first be dissolved (absorbed) in the liquid. In
this case, the overall reaction rate will depend on the rates of the mass transfer and
the chemical reaction step.

The so-called “Two Film Theory” (Lewis and Whiteman, 1923-24) assumes the for-
mation of laminar boundary layers on both sides of the interphase. Mass transfer
through these boundary layers can only be effected by means of diffusion, while the
phase transition is immeasurably fast, Fig. 86. Consequently, an equilibrium predo-
minates in the interphase and the saturation concentration cg* of the gas in the
interphase (*) obeys Henry’s law:

pc =Hycg" (14.42)

(Hy — Henry coefficient, pg — partial pressure of the gaseous reaction partner; indi-
ces: G — gas, L —liquid)

The two mass transfer coefficients kg and k; give the ratio of the respective diffu-
sion coefficients, D, to the respective boundary layer thickness, x;:
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Fig. 86 Graphic depiction of the concentration profiles on both
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k; o< Dy/x; (14.43)

Since kg >> ki, only the influence of k; is taken into account in the following.

If the mass transfer of a gaseous reaction partner into the liquid is accompanied
by a chemical reaction, the following case can occur depending on the reaction rate
and the mobility of the reaction partners: The concentration of A is not only reduced
to zero in the solution; in addition, the reaction front shifts from the liquid bulk to
the liquid-side boundary layer. As a result, the liquid-side boundary is apparently
reduced and finally eliminated in a chemical way (“chemisorption’), see Fig. 86.
This process increases the mass transfer coefficient by the “enhancement factor E” as
compared to its numerical value for purely physical absorption.

The target quantity E will depend on the parameters of mass transfer {k;, Da, D}
and reaction kinetics {k,, cA, cg}, whereby k, stands for the rate constant of a 2nd
order reaction:

{E; ki, Da, Dg; ky, ca™, cp) (14.44)

Apart from the trivial, obvious dimensionless numbers {E, Da/Dg, cA*/cB}, four pa-
rameters remain which form a single additional dimensionless number, namely the
Hautta number Hat (for a 2nd order reaction):

Hat, = \/D,k,cy /k; (14.45)

If the numbers Dp/Dg and cA*/cB are formulated as being a ratio of the diffusion
currents
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Fig. 87 Enhancement factor E for gas absorption with subse-
quent chemical conversion as a function of the Hatta number,
Hat, and the ratio of the diffusion currents, Z.

D,c
Z=_ BB 14.46
zD,c, ( )
the resulting functional relationship is:
E = f (Hat,, Z). (14.47)

This pi-relationship can be treated theoretically by assuming that the gradients of
the diffusion rates of the two mass flows and the chemical reaction rate are equal
(steady-state approximation):

dZC:; dZCB *
DA W = DB W = kCACB (1448)

This differential equation was numerically solved by van Krevelen and Hoftijzer [126]
using the simplifying assumption of an idealized concentration profile and the
results were graphically presented as a work sheet, Fig. 87. The following three ran-
ges can be differentiated:

1. Hat < 0.5: m= 1. In this case, physical absorption governs the rate. This can
be increased by more stirring more vigorously or with a better dispersion of
the gas throughput.
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2. Hat>2;cg..ch — Z=o0B >>cy we are dealing with a pseudo-1st order
reaction: k, cg = k;” and the Hatta number therefore reads:

Hat, = /D, K, /k; (14.49)

In this range, E increases directly proportionally to Hat,. Since E was defined as the
enhancement or acceleration factor in relation to the respective value in pure physical
absorption (g° = G/A — mass flux density at physical absorption)

E=8 = 8 14.50
& Tk (14.50)
it follows from the here valid relationship E = Hat; that
DK
g _ AT _ ’ox
Ko~k T ET \/DaK, ¢, (14.51)

From this relationship it can be deduced that k; is replaced, in the case of chemi-
sorption, by the kinetic expression /D Ak’l, which in the given reaction system only
depends on the temperature.

3. Hat > 2; Z << ~: With increasing k, cg and, subsequently, increasing Hatta
number, the molecular mobility of B and, consequently, Z become increa-
singly important. In this range, E is increasingly dependent on the mixing
intensity in the reaction system which reduces diffusion resistances.

It should be pointed out that the relationship {E, Hat,, Z} in Fig. 87, found by van
Krevelen and Hoftijzer on the basis of theoretical reasoning, was convincingly confir-
med by laboratory measurements; see works of Nijsing et al. [127], Yoshida and
Miura [128], as well Hofer and Mersmann [129].
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15
Selected Examples of the Dimensional-analytical Treatment
of Processes in the Realms of the Living World

Introductory remark

The results of evolution — the so-called living world: fauna and flora — cannot be lumped
together by means of dimensional analysis, because each group, as such, does not con-
sists of geometrically similar species and is not adapted to the same living conditions
(animals, birds, fishes). The biological treatises, which refer to the “Size and Shape in
Biology” [130] or to the “Size and Scaling in Human Evolution” [131], only mean that in
the living world, inspite of strong deviations from the geometric similarity (differently
shaped bodies), astounding relationships exist, which exert a “similar” influence of the
relevant physical parameters upon the size and shape of the species.

In contrast, correlations between egg mass of any bird species and the physical
parameters influencing it, can be quite easily represented in a dimensional-analyti-
cal manner because here practically geometrically similar objects are concerned.

On the other hand, it is beyond question that creatures are subjected to the same
physical regularities and frame conditions on Earth as the inanimate nature. These
are therefore describable by the same dimensionless numbers as in inanimate na-
ture and in technology.

For instance, the processes of motion in the living world are perfectly describable
by dimensional analysis and from these correlations valuable information is obtai-
ned about a similar process concerning another, larger or older species. The scale-
invariance of dimensionless representation is an advantage for the living world,
which should not be underestimated: The relevant dimensions of length span here
over a whole of eight decades.

To illustrate this, some examples will be given in this chapter.

Example 46: The consideration of rowing from the viewpoint of dimensional analysis

Why should larger boats containing many oarsman go faster than smaller ones con-
taining fewer oarsmen? Th. A. McMachon [133] pursued this question and his
approach deserves to be represented here.

Before examining his reasoning, we should remind ourselves of the Example 9 in
which the drag resistance, F, of a ship’s hull was treated. It has been pointed out
that its dependence on the geometric, material and process related parameters can
be represented by
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Ne = f(Re, Fr) (15.1)

The symbols correspond to

2

Ne_pv2127 Re o und Fr = g

In principle, the relationship (15.1) is, with respect to f (Re), similar to that of the
drag coefficient on a sphere. In the range of Re = 10°~10°, the drag coefficient is
approximately independent on Re.

The dependence Ne = f (Fr) describes bow wave development and bow wave resi-
stance in ships. Of course, it it not existing in submarines. At moderate speeds and
large ratios of boat length to boat width it is practically negligible. Only the friction
loss of the ship’s hull has to be overcome. Under these frame conditions (Re and Fr
irrelevant),

Ne = const — F oc v 12 (15.2)

This means that at a given speed (v= const) and considering geometrically similar
ship bodies, due to the proportionality between the wetted surface of the ship’s hull
and the displacement volume of the ship’s body (V o< 1%), the relationship

F/VeI'  (v=const) (15.3)

exists. This motivated the construction of larger and larger ships of iron in the 19th
century.

McMachon [133] comparatively evaluated the results obtained from four Cham-
pionships in rowing (Olympics 1964 Tokyo and 1968 Mexico City; World rowing
championship 1970 Ontario, International Championship 1970 Lucerne). Firstly, he
ascertained that all competitive shells (single scull, pair-oared, four-oared without
cox, eight-oared heavy weight) were geometrically similar. The slenderness ratio 1/b
is reasonably invariant of boat length. In addition, reasonably invariant is the boat
weight per oarsmean. Furthermore, full-scale towing tank tests have shown that the
resistance due to leeway and wave-making together constitute only 8% of the total
drag at 20 km/h, the Olympic target speed, for an eight-oared shell. The assumption
can be summarized as follows:

1  Geometrical similarity between boats exists and the displaced water volumes,
V, of the boats are similar to each other.
The boat weight per oarsman (number z), W, is a constant.
Each oarsman contributes the same power, P, and weight, W.

4 Skin friction drag is the only hindering force.

From the relationship

Vo zWo+zW=2 (Wo+W) cz—>z0 I’ (15.4)
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it follows that the displaced volume per oarsman (V o 1*) remains constant.
The total power, P, required to move the boat at velocity, v, is proportional to the
product of the drag resistance and velocity:

ZPo<vF
If F is taken into consideration according to (15.2), it follows that:
zPoc v ]?

Because P has been assumed to be constant (assumption 3), it follows from eq.
(15.4) that:

zoc P 512 2?3

This gives the relationship between z and v to be

Viec Broc Lyoc7!/P 5 yec !l (15.5)
"z

This relationship is shown in Fig. 88 for four boat types and four Championships
and proves an excellent agreement between the prediction given by dimensional

analysis and the measured data.
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Example 47: Why most animals swim beneath the water surface

In dealing with this question, we should first look at the flow conditions at the liquid
surface. It is well known that longer waves move faster than shorter ones and that
large ships can travel faster than small ones. Both things have to do with the wave
formation at the liquid surface, for which the gravitational acceleration, g, is also
characteristic of. Therefore, the motion of a body at the liquid surface is dependent
on the Froude number, Fr. From the structure of this pi-number

Fr

@[

(15.6)

it can be seen that at given flow conditions v* o< 1 applies.

As the characteristic wave dimension, 1, the wave crest or the distance between
two crests can be taken. A doubling of this length leads to the fourfold travelling or
spreading velocity of the waves.

Due to water displacement, a ship produces waves at travelling. A bow wave, a
few waves along the ship’s hull and a stern wave are created. At full speed, the so-
called “hull speed”, it is left with a bow wave and a stern wave, the two separated by
the length of the ship’s hull. The critical value of the Froude number at this state is
Fr = 0.16. Going faster than this requires that the ship leave its beneficial stern wave
astern and try to cut through or climb up its bow wave. Both would result in a dra-
matic rise in power demand.

The consequence is that a ship with a length of 100 m can easily travel at v = 13
m/s (25 sea miles per hour), whereas a ship of 10 m length achieves only v =4 m/s
(8 sea miles per hour). This facts also speak in favor of long ship bodies.

S. Vogel [134] reports on findings in the living world regarding this matter. A
duck, with a hull length of about one third of a meter, hits hull speed at 0.7 m/s.
Fully submersed, it can swim several times as fast. A mink, towed along the surface
above hull speed, had up to ten times as much drag as it had when fully submerged.

The critical value of the Froude number shows why decent surface speeds are off-
limits for the sizes of most of Nature’s “vessels” and why even air breathers mostly
swim submerged. An occasional animal porpoises up and down through the inter-
face or planes on the surface, but only a large whale could consider migrating as a
surface ship.

Snorkeling is rare, perhaps because swimming deep enough to keep wave drag
low requires breathing against to much hydrostatic pressure.

Example 48: Transition from walking to running — a function of the Froude number

R. McNeill Alexander (quoted in [134]) pointed to another, more general and “closer
to home” application of the Froude number. He noted that in a walking gait, an ani-
mal uses gravitational energy storage in pendulum fashion to reduce the work of
repeatedly accelerating inertial legs. Therefore, animals of all sizes should walk in a
dynamically similar manner at a given Froude number, when the characteristic
length is given by the hip-to-ground distance.
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To keep storing energy as they walk faster, animals increase amplitude, or stride
length, rather than frequency. Dynamic similarity implies that all will reach the
practical amplitude maximum at about the same Froude number, Fr = 0.5-0.6. At
that point, animals ranging from small insects to large mammals shift to a trot or
some other gait that uses elastic energy storage (mainly in tendons) instead of gravi-
tational storage.

The transition point is size dependent. For a typical adult, the gait transition hap-
pens at about the expected 8 km/h (5 mph)

Alexander also noted that the trot-to-gallop transition for quadrupeds occurs at
Fr=2—4. This is a fairly specific transition point considering the size range involved.

However, it must be considered that an animal is in free fall for a time within
each stride, therefore it would be reasonable to think that gravity retains its import-
ance. If the period of falling is a fixed fraction of stride duration and if running
speed at transition varies with leg length multiplied by the stride frequency — which
is supported by observation — then the respective transition point has to be set by by
a fixed Froude number.

Example 49: Walking and springing on water

The high surface tension of water is an important physical property in the living
world. It allows the tiniest creature (insects, spiders) to walk and even to jump on
the water surface. The question arises about which frame conditions have to be ful-
filled for this.

We should first ask what could be the maximum size which limits this process.
As a characteristic length, 1, the perimeter of the wetted surface of the legs is taken.
Because here the surface tension, o, counteracts the gravitation, g, the Bond number
will describe the process:

2
de%é%d (15.7)
Its numerical value has to be < 1, if surface tension has to overcome the gravitational
force. The left hand expression confirms that only very tiny creatures will manage
this, because the length enters this fraction with the square (leg surface).

The equivalent expression on the right hand is formed by the mass, m o p I>. An
insect of m= 0.1 g will need 1= 1.3 mm. This perimeter of the wetted leg surface can
easily be provided by the four legs displaying a fringe of hydrophobic foot hairs.
They are needed, if the insect is bound to jump vertically from the water surface. In
this case, surface support has to be an order of magnitude greater.

In the determination of the lower limit of this process, it is not the support but
the locomotion we are interested in. The water’s surface tension will pull against an
animal whichever way it tries to move. Can it get enough inertial force to offset the
force of surface tension? These frame conditions are determined by the Weber num-
ber:

P g" (15.8)

We
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So the animal has to be sufficiently large and fast, because size and speed act in the
same way. Therefore, really tiny creatures have problems. D‘Arcy Thompson (quoted
in [134]) has put it in this way:

“A water beetle finds the surface of a pool a matter of life and death, a perilous entan-
glement or an indispensable support.”

Example 50: What makes sap drift up a tree?

Could capillary rise account for the ascent of sap? This question can be easily answe-
red by formulating the Bond number as a fraction of the weight force of the lifted
water column, to the force exerted by the surface tension:

h
Bd=PE T (15.9)

(h — capillary rise height, r — capillary radius)

For the Bond number not to exceed one with a typical conduit radius of r =
0.05 mm, the rise height must remain h < 3 m. This wouldn’t be much of a tree;
therefore capillary rise cannot be responsible for it [134].

It is a generally accepted opinion, that columns of sap are maintained by the con-
siderable internal cohesion of water, in essence hanging from the tops of trees and
drawn up by evaporative water loss from the leaves. How can the water columns
remain open to the air at the top? If the water vapor quite clearly leaves the trees,
why air doesn’t enter? The answer is that the relevant capillary radius of the cell
walls is much smaller, r = 10~* mm. With this radius, the Bond number won’t rise
above one and air won'’t be pulled in by gravity until a tree exceeds 1.500 m in height
— over an order of magnitude higher than any tree ever known.
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List of important, named pi-numbers

name symbol pi-number remarks
A Mechanical process engineering
3
. Apl
Archimedes Ar % = (Ap/p) Ga
&
Bond Bd Pe- = We/Fr
v u
Brinkman Br TRAT) J - Joule’s heat equivalent
Deborah De An )\ — relaxation time
Euler Eu A—pz
pv
2
Froude Fr Y—
8
* V2
Froude, extend.  Fr Tg App =Fr (p/Ap)
&
Galilei Ga g—z = Re?/Fr
%
Laplace La A%d =Eu We
Mach Ma v/Vs v, — velocity of sound
Newton Ne % F — force
pvl
p
- P P-
o' power
Ohnesorge Oh B 7z =We'/?/Re
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List of important, named pi-numbers

name symbol pi-number remarks
Reynolds Re Vvl v=yu/p
Ppd,Y

Stokes Sto m =Re, (dp/1)
Strouhal Sr Lf/v f- frequency
Viscosity ratio Vis Uy /U w —wall

‘1
Weber We pVT
Weissenberg Wi Ny/t N; — 1. normal sress

B Thermal process engineering (heat transfer)

Fourier Fo
Grashof Gr
Nusselt Nu
Péclet Pe
Prandtl Pr

Rayleigh Ra
Stanton St

at/?

BATgl’
V2

h1/k

vl/a

v/a

BATgl’
av

h
vpC,

a — thermal diffusivity
=BAT Ga

h — heat transfer coefficient
k — heat conductivity

=Re Pr
a=k/(pcp)

C Thermal process engineering (mass transfer)

Bodenstein Bo
Lewis Le
Schmidt Sc
Sherwood Sh
Stanton St

v1/D,y

a/D

v/D

k1/D

k/v

D,y — dispersion coefficient
= Sc/Pr
D — mass diffusivity

k — mass transfer coefficient

__Sh
~ReSc



List of important, named pi-numbers

name symbol pi-number remarks
D Chemical reaction engineering
. E _ -
Arrhenius Arr RT E — energy of activation
cAH
Damké&hler Da —K eq. (14.7
pC, T, q. (14.7)
Da; kit k; — reaction rate constant
T — mean residence time
Day; k, L*/D =Da; Bo
cAH
Da k ‘c( K ) =Da; Da
11 1"pe, 7, 1
2
k,cAH, 1
Dary AR kTOR =Da, Pe Da
Hatta Hat; (ky D)2 [k 1st order reaction
Hat, (ks c; D)%y, 2nd order reaction
Prater B eq. (14.29) =Da Le ™"
Thiele modulus @ L/k, /D = Day /2
Weisz modulus ¥’ eq. (14.44) =1 ®* =1k Day
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